K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

|x+1| = 6 

Trường hợp 1 : x + 1 = 6 => x = 5

Trường hợp 2 : x + 1 = -6 => x = -7

|y-1| = 14

Trường hợp 1 : y - 1 = 14 => y = 15 

Trường hợp 2 : y - 1 = -14 => y = -13

12 tháng 11 2016

a)2(x+y)=2(z+x)

=>\(x+y=z+x\)

=>y=z

=>\(\frac{y-z}{5}=\frac{0}{5}=0\)

 

5(y+z)=2(z+x)

5y+5z=2z+2x

mà y=z(cmt)

nên 5y+5y-2y=2x

8y=2x

x=4y

=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)

=>ko thỏa mãn đề bài

 

13 tháng 11 2016

a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì xy4=yz5

Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)

\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)

\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)

\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

 

 

 

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

Bài 2: https://oml.vn/hoi-dap/detail/6465458369.html

Bài 3: https://hoidap247.com/cau-hoi/20162 

Bài 1: https://hoidap247.com/cau-hoi/1009171

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!

   Do a/b < c/d và b>0 ; d>0 suy ra ad< bc    ( 1)

  Cộng thêm ad vào 2 vế của ( 1) ta được:

ad + ad < bc + ad

 => a( b+d) < b ( a+ c )

=> a/b < a+c/b+c    ( 2)

Cộng thêm cd vào 2 vế của ( 2) ta được:

   ad + cd < bc + cd

=> ( a+ c) b < ( b+ d ) c

=> a+c/b+d < c/d     ( 3) 

Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y 

b)   Ta có: 

  -1/5 < -1/6 => -1/5 < -2/11 < -1/6 

-1/5 < -2/11 => -1/5 < - 3/16 < -2/11 

-1/5 < -3/16 => -1/5 < -4/21 < -3/16 

-1/5 < -4/21 => -1/5 < -4/21 < -3/16 

Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6 

Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3 

     

18 tháng 11 2019

Ta có : M = \(\frac{x+y}{z}+\frac{x+z}{y}=\frac{y+z}{x}\)

\(\Rightarrow M+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)\)

\(\Rightarrow M+3=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(\Rightarrow M+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M+3=2020.\frac{1}{202}\)

=> M + 3 = 10

=> M = 7

Vậy M = 7

18 tháng 11 2019

b) Ta có : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)

\(=\frac{2}{3.3}+\frac{2}{5.5}+\frac{2}{7.7}+...+\frac{2}{2017.2017}\)

\(< \frac{2}{\left(3+1\right)\left(3-1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+\frac{2}{\left(7-1\right)\left(7+1\right)}+...+\frac{2}{\left(2017-1\right)\left(2016-1\right)}\)

\(=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}\)

\(=\frac{1008}{2018}=\frac{504}{1009}\)

=> \(A< \frac{504}{1009}\left(\text{ĐPCM}\right)\)