Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)
=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)
2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)
\(=-cos\left(\pi-A\right)=cosA\)
4) bạn ơi +2 vào vế phải mới đúng nhé
2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)
\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)
=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)
\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)
= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3
= sin2A + sin2B + sin2C
Lời giải
Mấu chốt của bài toán, ta sẽ CM \(r=4R\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)\)
Ta có:
Theo định lý hàm sin: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\Rightarrow BC=2R\sin A\)
\(\Rightarrow 2R\sin A=BC=BN+NC=r\cot\left(\frac{B}{2}\right)+r\cot\left(\frac{C}{2}\right)\)
\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\left ( \frac{\cos\frac{B}{2}}{\sin \frac{B}{2}}+\frac{\cos\frac{C}{2}}{\sin \frac{C}{2}} \right )=r\frac{\sin\frac{B+C}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}\)
\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\frac{\sin\frac{180^0-A}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}=r\frac{\cos \frac{A}{2}}{\sin \frac{B}{2}\sin\frac{C}{2}}\)
\(\Rightarrow r=4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)
Do đó BĐT chuyển về CM:
\(\sin^3\frac{A}{2}+\sin^3\frac{B}{2}+\sin^3\frac{C}{2}\geq 3\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)
Hiển nhiên đúng theo AM-GM
Do đó ta có đpcm
Dấu $=$ xảy ra khi \(\widehat{A}=\widehat{B}=\widehat{C}\Leftrightarrow \triangle ABC\) đều
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
f/
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)
\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=4sinC.sinA.sinB\)
g/
\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)
\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
\(=1-cosC.cos\left(A-B\right)+cos^2C\)
\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)
\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=1-2cosC.cosA.cosB\)
d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)
e/
\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)
BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)
BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)
Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)
Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v
\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)