Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Gọi tam giác vuông đó là tam giác ABC (góc BAC = 900),
\(\dfrac{AB}{AC}=\dfrac{3}{4}\&BC=125\left(cm\right)\) , gọi \(AH\perp BC=\left\{H\right\}\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=AC\dfrac{3}{4}\left(1\right)\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC, có:
\(AB^2+AC^2=BC^2\left(2\right)\)
Thay (1) vào (2) ta được:
\(\left(\dfrac{3}{4}AC\right)^2+AC^2=BC^2\Leftrightarrow AC^2\dfrac{9}{16}+AC^2=BC^2\Leftrightarrow AC^2\dfrac{25}{16}=BC^2\)
Mà BC = 125cm
\(\Rightarrow AC^2\dfrac{25}{16}=125^2\Leftrightarrow AC^2=10000\Leftrightarrow AC=100\left(cm\right)\)
Thay AC = \(100\) vào (1) ta được:
\(AB=\dfrac{3}{4}.100=75\left(cm\right)\)
Ta lại có: \(AB^2=BC.BH\) (định lí 1)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\left(cm\right)\)
mà BH + CH = BC \(\Rightarrow CH=BC-BH=125-45=80\left(cm\right)\)
Vậy AB = 75cm, AC = 100cm, BH = 45cm, CH = 80cm
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`, đường cao `AH`.
Có: `(AB)/(AC)=3/7 = (3x)/(7x) (x>0)`
Áp dụng hệ thức lượng trong tam giác vuông ABC:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(42^2)=1/(9x^2)+1/(49x^2)`
`=> x=2\sqrt58(cm)`
`=> AB=6\sqrt58, AC=14\sqty58 (cm)`
Áp dụng định lí Pytago:
`AB^2=HB^2+AH^2`
`<=> (6\sqrt58)^2=HB^2+42^2`
`=> HB=18(cm)`
`=> HC = AH^2 : HB = 98(cm)`
Vậy `HB=18cm, HC=98cm`.
Gọi tam giác vuông trên là ABC, ta có:
AB/AC=3/4
=> AB^2/AC^2 = 9/16
=> 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tam giác vuông ABC,tam giác vuông BHA và tam giác vuông AHC là 3 tam giác đồng dạng.
Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`
Theo đề: `(AB)/(AC)=3/4=(3x)/(4x) (x >0)`
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>125^2=9x^2+16x^2`
`=>x=25`
`=> AB=75 ; AC=100`
Có: `AB^2=BH.BC=>BH=45`
`=>CH=BC-BH=80`.