K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

- Ta thấy OA = OB = OC

- Trung trực ứng với cạnh BC đi qua O.

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
7 tháng 6 2017

a) Tam giác ABC vuông tại A => AB2=BC2-AC2 => AB2=132-52 <=> AB2=169-25=144 => AC=12

b) Giao điểm của 3 đường trung trực trong tam giác cách đều 3 đỉnh của tam giác đó. Mà OA=OB=OC

=> O là giao điểm của 3 đường trung trực trong tam gaics ABC.

c) Tam giác ABC vuông tại A => Giao của 3 đường trung trực trong tam giác ABC nằm trên cạnh BC

Mà OB=OC => Trung điểm của BC trùng với điểm O => AO là trung tuyến của tam giác ABC.

G là trọng tâm => GO=1/3AO=1/3BO=1/3CO. BO=CO=1/2BC =>BO=CO=13/2=6,5 (cm)

=> GO=1/3.6,5\(\approx\)2,1 (cm)   

11 tháng 5 2017

khó quá đi à

1. Cho tam giác PMN có góc P bằng 80 độ , PM=PN. Phân giác của góc P cắt MN tại Ia.Tính góc PMN , Góc PNM . Chứng minh PI là trung trực của MNb. Gọi d là trung trực của PM , d cắt MN tại E . Tính góc MPEc.Trên tia PE lấy điểm F sao cho PF=NE . Chứng minh MF=PEd.Gọi K là trung điểm của EF. Chứng minh góc KMF= góc IPE2.( Vẽ đường trung trực của đoạn thẳng bằng compa và thước thẳng )a.Để vẽ đường trung...
Đọc tiếp

1. Cho tam giác PMN có góc P bằng 80 độ , PM=PN. Phân giác của góc P cắt MN tại I

a.Tính góc PMN , Góc PNM . Chứng minh PI là trung trực của MN

b. Gọi d là trung trực của PM , d cắt MN tại E . Tính góc MPE

c.Trên tia PE lấy điểm F sao cho PF=NE . Chứng minh MF=PE

d.Gọi K là trung điểm của EF. Chứng minh góc KMF= góc IPE

2.( Vẽ đường trung trực của đoạn thẳng bằng compa và thước thẳng )

a.Để vẽ đường trung trực của đoạn thằng AB như sau : 

- LẦn lượt lấy A, B làm tâm và vẽ các đường tròn bán kính r ( r>AB/2) , hai đường tròn cắt nhau tại I , K

-Đường thẳng IK cắt AB tại H chính là đường trung trực của AB

b.Chứng minh IK là đường trung trực của AB

3.Cho tam giác ABC . Đường trung trực a của đoạn BC và đường trung trực b của đoạn AC cắt nhau tại O

a.Chứng minh OA=OB=OC

CÁC BẠN GIẢI GIÚP MÌNH NHÉ . MÌNH CẦN GẤP . CẢM ƠN . GIẢI ĐƯỢC CÂU NÀO THÌ GIẢI NHA . THANKS 

 

b. Gọi M là trung điểm của đoạn AB . Chứng minh OM là đường trung trực của đoạn thẳng AB

0
6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.c) So sánh các diện tích của 2 tam giác RPQ và RNQ.Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.Bài giải:a) Hai tam giác PMQ và PQR có:Chung đỉnh P.Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có...
Đọc tiếp

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.

b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.

c) So sánh các diện tích của 2 tam giác RPQ và RNQ.

Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.

Bài giải:

a) Hai tam giác PMQ và PQR có:

  • Chung đỉnh P.
  • Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có chung chiều cao xuất phát từ P.

Mặt khác do Q là trọng tâm của tam giác MNP suy ra MQ = 2RQ.

Từ đó suy ra: b) Tương tự câu a.

c) Hai tam giác RPQ và RNQ có chung đỉnh Q, hai cạnh NR và RP cùng nằm trên một đường thẳng nên chúng có chung đường cao từ Q. RN = RP do đó:

 

Bài tập 68 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho góc xOy, hai điểm A,B lần lượt nằm trên Ox và Oy.

a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A,B.

b) Nếu OA = OB thì có bao nhiêu điểm M thoả mãn yêu cầu ở câu a?

Bài giải:

a) Điểm M cách đều hai cạnh của góc xOy suy ra M nằm trên đường phân giác của góc đó.

Điểm M cách đều A và B suy ra M nằm trên đường trung trực của AB.

Vậy ta xác định được M chính là giao điểm của hai đường thẳng trên.

b) Nếu OA = OB thì đường trung trực của AB chính là phân giác góc xOy do khi đó tam giác OAB cân tại O, đường phân giác đồng thời là đường trung trực của cạnh AB.

Khi đó thì có vô số điểm M thoả mãn, tập hợp điểm M thoả mãn yêu cầu chính là đường phân giác của góc xOy.

Bài tập 69 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho hai đường thẳng phân biệt không song song, không vuông góc với nhau là a và b, điểm M không nằm trên hai đường này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và vẽ đường thẳng d vuông góc với b tại R, cắt a tại S.

Chứng minh rằng đường thẳng qua M vuông góc với SQ cũng đi qua giao điểm của a và b.

Bài giải: Vì a và b không song song nên chúng cắt nhau giả sử tại A.

Xét tam giác AQS có: QP ⊥ AS vì QP ⊥ a.

SR ⊥ AQ vì SR ⊥ b.

Ta có QP và RS cắt nhau tại M.

Vậy M là trực tâm của ΔAQS.

=> Đường thẳng đi qua M và vuông góc với QS tại H sẽ là đường cao thứ ba của ΔAQS.

Vậy MH phải đi qua đỉnh A của ΔAQS hay đường thẳng vuông góc với QS đi qua giao điểm của a và b (Điều phải chứng minh).

Bài tập 70 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho A, B là hai điểm phân biệt và d là đường trung trực của đoạn thẳng AB.

a) Ta ký hiệu PA là nửa mặt phẳng bờ là đường thẳng d có chứa điểm A (không kể d). Gọi N là một điểm của PA và M là giao điểm của đường thẳng NB và d. Hãy so sánh NB với NM + MA. Từ đó suy ra NA < NB.

b) Ta ký hiệu PB là nửa mặt phẳng bờ d có chứa B (không kể d). Gọi N’ là một điểm của PB. Chứng minh rằng N’B < N’A.

c) Gọi L là một điểm sao cho LA < LB. Hỏi điểm L nằm ở đâu?

Bài giải: a) Ta có M nằm trên đường trung trực của AB nên MA = MB.

N, M, B thẳng hàng nên NB = NM + MB

Mà MA = MB suy ra NB = NM + MA.

Xét tam giác NMA ta có: NM + MA > NA => NB > NA.

b) Tương tự câu a.

c) L phải nằm ở PA

0