K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

16 tháng 5 2020

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

16 tháng 5 2020

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

NV
4 tháng 6 2020

Công thức hạ bậc

\(sin^2a=\frac{1}{2}-\frac{1}{2}cos2a\)

Julian Edward

NV
31 tháng 5 2020

\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(P=1-\left[1-cos\left(\frac{\pi}{2}-2a\right)\right]+sin2a-cos2a-6cota\)

\(=sin2a+sin2a-cos2a-6cota\)

\(=2sin2a-cos2a-6cota\)

\(=4sina.cosa-\left(cos^2a-sin^2a\right)-\frac{6cosa}{sina}\) (thay số và bấm máy)

NV
7 tháng 6 2020

\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)

\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)

NV
19 tháng 6 2020

\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)

\(sin2a=2sina.cosa=-\frac{24}{25}\)

\(cos2a=2cos^2a-1=\frac{7}{25}\)

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}=...\)

c sai đề

\(sin\left(a+\frac{\pi}{4}\right)=sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}=...\)

\(M=\frac{\left(-\frac{3}{5}\right)^2-\left(\frac{7}{25}\right)^2}{-\frac{3}{4}}=...\)