K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

\(3^{200}=\left(3^2\right)^{100}=9^{100};2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(\rightarrow3^{200}>2^{300}\)

\(3^{54}=\left(3^2\right)^{27}=9^{27};2^{81}=\left(2^3\right)^{27}=8^{27}\)

\(\rightarrow3^{54}>2^{81}\)

8 tháng 9 2015

bn vào câu hỏi tương tự

23 tháng 9 2016

a, Ta có: 

3200 = ( 32100 = 9100

2300 = (23)100 = 8100

Nhận xét: 9100 > 8100

=) 3200 > 2300

23 tháng 9 2016

b,

Ta có:

1255 = (53)5 = 515

257 = (52)7 = 514

Nhận xét: 515 > 514

=) 1255 > 257

      

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

15 tháng 12 2018

\(Goi:d=UCLN\left(2n+3;2n+4\right)\)

\(Taco:\hept{\begin{cases}2n+3⋮d\\2n+4⋮d\end{cases}}\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy 2n+3 và 2n+4 nguyên tố cùng nhau 

Đây là câu 6 nha

15 tháng 12 2018

em hoc lop 5

20 tháng 3 2020

b) Gọi d là ước chung của 4n+ 3 và 3n + 2 

Ta có : \(\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(4n+3\right)⋮d\\4.\left(3n+2\right)⋮d\end{cases}}}\)=> 3.( 4n + 3 ) - 4 . ( 3n+2 ) \(⋮d\)

                                                                                      12n + 9   - 12n+ 8    \(⋮\)d

                                                                                                         1 \(⋮\)d => d \(\inƯ\left(1\right)=\left\{1\right\}\)=> d = 1

Vì d=1 => ( 4n+3 ,3n+2) = 1 => đpcm

                                                                                   

                        

9 tháng 10 2016

714 = 72.7 =(72)= 497

507    >       497

=> 507 >      714

9 tháng 10 2016

\(7^{14}\) và  \(50^7\)

\(7^{14}=\left(7^2\right)^7=49^7\)

Vì \(49^7< 50^7\left(49< 50\right)\)

\(\Rightarrow7^{14}< 50^7\)

tíc mình nha

24 tháng 2 2018

\(125^5\)và  \(25^7\)

Ta có: 

\(125^5=\left(5^3\right)^5=5^{15}\)

\(25^7=\left(5^2\right)^7=5^{14}\)

Vì \(5^{15}>5^{14}\)

\(\Rightarrow125^5>25^7\)

24 tháng 2 2018

a, \(125^5=\left(5^3\right)^5=5^{15}\)

    \(25^7=\left(5^2\right)^7=5^{14}\)

mà \(5^{15}>5^{14}\)\(\Rightarrow\)\(125^5>25^7\)

b, ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

             \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

 mà \(1000^{10}< 1024^{10}\)nên \(10^{30}< 2^{100}\)