K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5

27 tháng 6 2017

a)

a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)

Ta có:

\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'

\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2

Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2

b)

a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)

Ta có:

\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'

\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5

Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5

11 tháng 7 2016

câu 1 sai đề bạn ạ

câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11

11 tháng 7 2016

1.Đề sai

2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N 

Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)

Do đó \(a^2\) chia 11 dư 5

31 tháng 8 2019

a.Ta có a /4 dư 2 là 6

           b/4 dư 1 là 5

Vậy a*b=6*5=30 chia 4 dư 2

b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1

c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1

31 tháng 8 2019

a) Vì a chia 4 dư 2 nên a = 4k + 2 

        b chia 4 dư 1 nên b = 4t + 1 

a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2  chia 4 dư 2

Vậy ab chia 4 dư 2

b) Vì a là số lẻ nên a = 2k + 1

a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1

Vậy a² chia 4 dư 1 

c) Vì a² là số chính phương ( a là số tự nhiên )

suy ra a² chia 4 dư 0 hoặc 1

5 tháng 7 2021

a có dạng là 4x+2

b có dạng là 4y+2

\(\left(4x+2\right)\left(4y+2\right)\)

\(16xy+8y+8x+4\)

\(4\left(4xy+2y+2x+1\right)⋮4\)

vậy đáp án \(a\left(dư0\right)\)

17 tháng 6 2019

a chia 7 dư 1 => a=7x+1 ( x thuộc N)

b chia 7 dư 2 => b=7k+2 (k thuộc N)

=>  ab=(7x+1)(7k+2)=49xk+14x+7k+2

vì 49xk; 14x; 7k đều chia hết cho 7

=> tích ab chia 7 dư 2

17 tháng 6 2019

Gọi \(a=3k+1;b=3m+2\)

Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.

Vậy....

13 tháng 3 2020

Đặt \(a=3k+1;b=3n+2\)

Ta có:\(ab=\left(3k+1\right)\left(3n+2\right)=9kn+6k+3n+2\) chia 3 dư 2

Vậy ab chia 3 dư 2

13 tháng 3 2020

đương nhiên là dư 2 rùi

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

25 tháng 6 2017

Đặt \(a=11x+4\)

\(a^2=\left(11x+4\right)^2=121x^2+88x+16\)

\(=121x^2+88x+11+5\)

\(=11\left(11x^2+8x+1\right)+5\)

\(\Rightarrow a^2\) chia 11 dư 5

Vậy...

25 tháng 6 2017

a chia 11 dư 4 => a có dạng 11k + 4

$=>a^2=(11k+4)^2=121k^2+88k+16=11(11k^2+8k+1)+5$

$=>a^2$ chia 11 dư 5.