K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Ta có: 1/n.1/n + 1 = 1/n.(n + 1)

           1/n - 1/n + 1 = n + 1 - n/n.(n + 1) = 1/n.(n + 1) 

Vì 1/n.(n + 1) = 1/n.(n + 1) nên 1/n.1/n + 1 = 1/n - 1/n + 1

Đúng 10000% mình làm rồi, k mình nha!

27 tháng 6 2016

Ta có : 1/n-1/n+1=n+1/n.(n+1)-n/n.(n+1)=1/n.(n+1)

1/n.1/n+1=1/n(n+1)

=> hiệu của chúng = tích của chúng 

27 tháng 6 2016

cứu mih voi

16 tháng 2 2017

\(\frac{1}{n}\)\(\frac{1}{n+1}\)\(\frac{n+1}{n\left(n+1\right)}\)\(\frac{n}{n\left(n-1\right)}\)=\(\frac{n+1-n}{n\left(n+1\right)}\)\(\frac{1}{n\left(n+1\right)}\)

=> \(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{n}\)\(\frac{1}{n+1}\)

23 tháng 3 2021

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)

Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau

23 tháng 3 2021

\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)

\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)

Cho mik xin tk

28 tháng 3 2016

mình biết

19 tháng 3 2017

\(\frac{1}{n}\times\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)(Luôn đúng)

14 tháng 3 2016

lấy từ sgk toán 6

5 tháng 3 2016

sorry em mới học lớp 5

5 tháng 3 2016

me too

5 tháng 3 2016

Ta co:1/n.1/n+1=1/n(n+1)=1/n^2+n;1/n-1/n+1=n+1/n(n+1)-n/n(n+1)=n+1-n/n^2+n=1/n^2+n

=>1/n.1/n+1=1/n-1/n+1