K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

TH1:a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow H=\dfrac{b+a}{b}.\dfrac{c+b}{c}.\dfrac{a+c}{a}=\dfrac{\left(-c\right)\left(-b\right)\left(-a\right)}{b.c.a}=-1\)

TH2:\(a+b+c\ne0\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

\(\Rightarrow H=\dfrac{b+a}{b}.\dfrac{c+b}{c}.\dfrac{a+c}{a}=\dfrac{\left(2c\right)\left(2b\right)\left(2a\right)}{b.c.a}=8\)

Vậy H=-1 hoặc H=8

19 tháng 3 2017

c)

Ta có \(a< b< c< d< m< n\)

\(\Rightarrow\left\{{}\begin{matrix}a< b\\c< d\\m< n\end{matrix}\right.\)

\(\Rightarrow a+c+m\le b+d+n\)

\(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)

\(\Leftrightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Leftrightarrow a+c+m< b+d+n\) ( thỏa mãn đề bài )

\(\Rightarrow\) đpcm

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

26 tháng 2 2024

Xét: a>b

=>a-b>0

=>|a-b|=a-b

=>a-b<1

=>a<b+1

=>a/b<b+1/b

=>a/b<1+1/b

Vì:b>1

=>1/b<1

=>a/b<1+1

=>a/b<2

Mà: a>b

=>b/a<1

=>a/b+b/a<1+2

=>a/b+b/a<3

Ngược lại với b>a

Xét:a=b

=>a/b+b/a=2

=>a/b+b/a<3

Chắc giờ bạn làm đc rồi nhỉ

9 tháng 11 2017

1+1=3

1234567

27 tháng 12 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=1\)

\(\Rightarrow\dfrac{a+b-c}{c}=1\Leftrightarrow a+b-c=c\Leftrightarrow a+b=2c\)

\(\Rightarrow\dfrac{b+c-a}{a}=1\Leftrightarrow b+c-a=a\Leftrightarrow b+c=2a\)

ta có

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{a+b}{a}\times\dfrac{c+a}{c}\times\dfrac{b+c}{b}=\dfrac{2c}{a}\times\dfrac{2b}{c}\times\dfrac{2a}{b}=8\)

\(\Rightarrow M=8\)

17 tháng 3 2017

b)Ta có:

\(\left|x+\dfrac{1}{1.2}\right|\ge0,\left|x+\dfrac{1}{2.3}\right|\ge0,...,\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow\)\(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+...+\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)\(\Rightarrow x+x+...+x+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}=100x\)\(\Rightarrow99x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{99}-\dfrac{1}{100}=100x\)\(\Rightarrow1-\dfrac{1}{100}=x\)

\(\Rightarrow x=\dfrac{99}{100}\)

19 tháng 3 2017

ta có:\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)do đó:

+)\(\dfrac{a+b-c}{c}=1\)

=> a+b-c=c

=> a+b=2c

=> a+b+c =3c (1)

cm tương tự ta đươc (bạn cần làm chi tiết hơn)

+)3a=a+b+c (2)

+) 3b=a+b+c(3)

từ (1);(2) và (3)=> 3a=3b=3c

=> a=b=c

=>B=\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{c}{c}\right)\left(1+\dfrac{b}{b}\right)=2.2.2=8\)

vậy ...

26 tháng 5 2017

Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)

Thêm ab và cả hai vế của (1) :

ad + ab < bc + ab

a(b+d) < b(a+c)

=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)

Thêm cd vào hai vế của (1) :

ad + cd < bc + cd

d( a+c) < c( b+d )

=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)

Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)

Câu 1 : (4d) Tính giá trị của biểu thức : \(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) \(b,B=1+3^2+3^3+........+3^{2018}\) Câu 2 : (5d) a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\) b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\) c, Tìm x;y;z biết...
Đọc tiếp

Câu 1 : (4d) Tính giá trị của biểu thức :

\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)

\(b,B=1+3^2+3^3+........+3^{2018}\)

Câu 2 : (5d)

a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)

b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)

c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)

Câu 3 : (5d)

a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)

b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)

c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)

Tính giá trị biểu thức :

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)

Câu 4 : (4d)

a, Tìm giá trị nhỏ nhất của biểu thức :

\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)

b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.

Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}

Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)

CMR : A là một số nguyên, biết :

\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)

Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!

1
22 tháng 1 2018

3a) A=\(\dfrac{5}{x+xy+xyz}+\dfrac{5}{y+yz+1}+\dfrac{5xyz}{z+xz+xyz}\)

=\(\dfrac{5}{x\left(1+y+yz\right)}+\dfrac{5}{y+yz+1}+\dfrac{5xy}{1+x+xy}\)

=\(\dfrac{5}{x\left(1+y+zy\right)}+\dfrac{5x}{x\left(1+zy+y\right)}+\dfrac{5xy}{x\left(1+y+zy\right)}\)

=\(\dfrac{5+5x+5xy}{x\left(1+yz+y\right)}\)

=\(\dfrac{5x\left(yz+1+y\right)}{x\left(1+yz+y\right)}=5\)

4 tháng 2 2018

Thank you!!!!!yeu