K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

a) P = 2x + 2xy - y

|x| = 2,5 => x thuộc { 2,5; -2,5 }

* TH1 : x = 2,5 và y = -0,75

Thay vào P ta có :

P = 2 . 2,5 + 2 . 2,5 . (-0,75) - ( -0,75 ) 

P = 2

* TH2 : x = -2,5 và y = -0,75

Thay vào P ta có :

P = 2 . ( -2,5 ) + 2 . ( -2,5 ) . ( -0,75 ) - ( -0,75 )

P = -0,5

Vậy.....

13 tháng 1 2019

b) \(Q=\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\)

\(Q=\frac{2}{3\cdot4}\)

\(Q=\frac{1}{3\cdot2}\)

\(Q=\frac{1}{6}\)

p/s: P làm Q, Q làm P :D

20 tháng 2 2017

=\(\frac{2^{12}.3^5+2^{12}.3^4}{2^{12}.3^6+2^{12}.3^3}\)

=\(\frac{2^{12}\left(3^5+3^4\right)}{2^{12}\left(3^6+3^3\right)}\)

\(=\frac{324}{756}\)

=\(\frac{3}{7}\)

27 tháng 1 2017

\(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)

20 tháng 10 2017

2048/3081

3 tháng 1 2019

\(\frac{2048}{5135}\)

19 tháng 9 2016

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(\Rightarrow A=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)

\(\Rightarrow A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)

\(\Rightarrow A=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-4\right)}{5^9.7^8\left(1+2^3\right)}\)

\(\Rightarrow A=\frac{2}{3.4}-\frac{5.\left(-3\right)}{9}\)

\(\Rightarrow A=\frac{1}{3}-\frac{-15}{9}\)

\(\Rightarrow A=\frac{1}{3}+\frac{5}{3}\)

\(\Rightarrow A=\frac{6}{3}=2\)

Vậy \(A=2\)

15 tháng 7 2017

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{2^{12}.3^4.2}{2^{12}.3^5.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)

\(=\frac{1}{6}-\frac{-10}{3}=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)

9 tháng 1 2018

lam nhu stctv ay dung day to thu lam roi

24 tháng 7 2016

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^4.2^3.7^3}\)

\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^4.7^3\left(5^5+2^3\right)}\)

\(=\frac{1}{6}+\frac{93750}{3133}\)

14 tháng 8 2019

A=663552 

   (22⋅3)6⋅84⋅35

A=   663552 

  4096⋅177147⋅4096

A=   663552
   2972033482752
A=    1
4478976