Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: GTLN
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+\sqrt{2019a+bc}}=\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{a+\sqrt{a^2+ab+ca+bc}}\)
\(=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{b+\sqrt{2019b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2019c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
a. A=Đề=\(\frac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\frac{x\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\)\(\left(ĐKXĐ:x>1\right)\)
\(=\frac{-2\sqrt{x-1}}{x-x+1}+x\)\(=x-2\sqrt{x-1}\)
b. A>0 \(\Leftrightarrow x-2\sqrt{x-1}>0\)
\(\Leftrightarrow x>2\sqrt{x-1}\)\(\Rightarrow x^2>4\left(x-1\right)\)\(\Leftrightarrow x^2>4x-4\)
\(\Leftrightarrow x^2-4x+4>0\)\(\Leftrightarrow\left(x-2\right)^2>0\)\(\Rightarrow x-2>0\)
\(\Leftrightarrow x>2\)
a) A= \(\frac{1}{\sqrt{x}+\sqrt{ }x-1}\) - \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x\sqrt{x}-x}{1-\sqrt{x}}\) với x>1\(\frac{\sqrt{x}-\sqrt{x-1}}{x-\left(x-1\right)}-\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\) \(=\frac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{1}+x\) \(=-2\sqrt{x-1}+x\) b) với x>1 ta có A>0 hay \(-2\sqrt{x-1}\)\(+x\)\(>0\)\(\Rightarrow x>2\sqrt{x-1}\)\(\Leftrightarrow\)\(x^2>4\left(x-1\right)\Leftrightarrow x^2-4x+4>0\)\(\left(x-2\right)^2>0\)(--> \(x\ne\pm2\) )
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)
Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)
Cộng vế với vế các bất đẳng thức cùng chiều ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )
dấu " = " xẩy ra khi a = b = c > 0
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Xét : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{2}{abc}.\left(a+b+c\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(Vì a + b + c = 0)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) (đpcm)
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)