Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b
Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )
Vậy A = -1
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\Rightarrow x+y+z=0\).
\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=4+2.\frac{x+y+z}{xyz}=4+0=4\).
\(\Leftrightarrow A=\pm2\).
Từ gt,ta có :\(\frac{A}{B-C}=-\left(\frac{B}{C-A}+\frac{C}{A-B}\right)=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)}\Rightarrow\frac{A}{\left(B-C\right)^2}=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(1\right)\)
Tương tự,ta có :\(\frac{B}{\left(C-A\right)^2}=\frac{CB-AB-C^2+A^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(2\right);\frac{C}{\left(A-B\right)^2}=\frac{CA-CB-A^2+B^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(3\right)\)
Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.
07/01/2017 lúc 19:12
CHO A,B,C ĐÔI MỘT KHÁC NHAU VÀ AB−C +BC−A +CA−B =0
TÍNH GIÁ TRỊ CỦA A(B−C)2 +B(C−A)2 +C(A−B)2
Được cập nhật {timing(2017-08-24 22:13:15)}
Toán lớp 8
Phan Thanh Tịnh 07/01/2017 lúc 23:29
Thống kê hỏi đáp
Báo cáo sai phạm
Từ gt,ta có :AB−C =−(BC−A +CA−B )=AB−B2−AC+C2(A−C)(A−B) ⇒A(B−C)2 =AB−B2−AC+C2(A−C)(A−B)(B−C) (1)
Tương tự,ta có :B(C−A)2 =CB−AB−C2+A2(A−C)(A−B)(B−C) (2);C(A−B)2 =CA−CB−A2+B2(A−C)(A−B)(B−C) (3)
Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.
Đúng 18 Hoàng Nguyễn Quỳnh Khanh đã chọn câu trả lời này.
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{a^2\left(b-c\right)-b^2\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{a^2b-a^2c-b^2a+b^2c}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{\left(a-b\right)\left(ab-ac-bc\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)
\(P=\frac{ab-ac-bc}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(P=\frac{ab-ac-bc+c^2}{\left(a-c\right)\left(b-c\right)}=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)
=> P = 1
Đáp số: P=1
\(P=-\frac{a^2}{\left(a-b\right)\left(c-a\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}-\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Khi đó \(A=2^3=8\)
Nếu \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
Thay vào ta được:
\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-abc}{abc}=-1\)
Vậy A = 8 hoặc A = -1
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^