Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)
\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)
\(=\frac{1}{2014}.\frac{2015}{2}\)
\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2
=>\(A< \frac{-1}{2}\)hay A<B
Ta có :
\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=2017.\frac{1}{2017}=1\)
\(\Rightarrow A=1-3=-2\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}+1\)
\(\Leftrightarrow\frac{20}{x+3}-8=8-\frac{18}{x+3}\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=8+8\)
\(\Leftrightarrow\frac{38}{x+3}=16\)
\(\Leftrightarrow x+3=2,375\)
\(\Leftrightarrow x=-0,625\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\left(\frac{18}{x+3}+1\right)\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}-1\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=7-1+8\)
\(\Leftrightarrow\frac{38}{x+3}=14\)
\(\Leftrightarrow\left(x+3\right)14=38\)
\(\Leftrightarrow14x+42=38\)
\(\Leftrightarrow14x=-4\Leftrightarrow x=-\frac{4}{14}=-\frac{2}{7}\)
Vậy \(x=-\frac{2}{7}\)
a) (x + 1/2)^2 = 1/16
=> (x + 1/2)^2 = (1/4)^2 hoặc (x + 1/2)^2 = (-1/4)^2
=> x + 1/2 = 1/4 hoặc x + 1/2 = -1/4
* x + 1/2 = 1/4
x = 1/4 - 1/2
x = -1/4
* x + 1/2 = -1/4
x = -1/4 - 1/2
x = -3/4
Vậy x = -1/4 hoặc x = -3/4
b) 2^x+2 - 2^x = 9^6
=> 2^x . 2^2 - 2^x = 9^6
=> 2^x . (2^2 - 1) = 9^6
=> 2^x . (4 - 1) = 9^6
=> 2^x . 3 = (3^2)^6
=> 2^x . 3 = 3^12
=> 2^x = 3^12 : 3
=> 2^x = 3^11
Vì 3^11 không chia hết cho 2
=> Không có giá trị nào của x thõa mãn đề bài
c) (3^x)^2 : 3^3 = 1/243
=> 3^2x = 1/243 . 3^3
=> 3^2x = 1/243 . 27
=> 3^2x = 1/9
=> 3^2x . 9 = 1
=> 3^2x . 3^2 = 1
=> 3^2x+2 = 1
=> 3^2x+2 = 3^0
=> 2x + 2 = 0
=> 2x = 0 - 2
=> 2x = -2
=> x = -2 : 2
=> x = -1
a\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2
\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{4}-\frac{1}{2}\)
\(\Rightarrow x=\frac{-1}{4}\)
\(A=\left|x-\frac{1}{3}\right|+\frac{1}{4}\ge\frac{1}{4}>\frac{1}{5}\)