K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(a,A=5^1+5^2+...+5^{100}\)

\(\Rightarrow A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(\Rightarrow6\left(5+5^3+...+5^{99}\right)\)

\(\Rightarrow A⋮6\)

\(b,B=2+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)

\(\Rightarrow B=2\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)

\(\Rightarrow7\left(2+...+2^{28}\right)\)

\(\Rightarrow B⋮7\)

17 tháng 10 2017

ban koko 

11 tháng 8 2018

\(A=2+2^2+2^3+...+2^{60}\)

    \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

      \(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy....

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)

    \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

     \(=30.\left(1+5^2+...+5^6\right)⋮30\)

11 tháng 8 2018

Bài 1 bạn kia giải rồi 

2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d

=> (6n+15)-(6n+14) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* nên d = 1

=> ƯCLN(2n+5;3n+7) = 1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

3. Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x - 4y chia hết cho 5

=> ĐPCM

18 tháng 10 2015

a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

                                               \(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)

                                                \(=3\left(1+2^2+...+2^6\right)\)

                    Vậy A chia hết ho 3

Câu b,c tương tư

15 tháng 4 2020

A=(21+22+23+24+25+26) + . . . + (22005+22006+22007+22008+22009+22010)

A=2^1(1+2+22+23+24+25)+...................+22005(1+2+22+23+24+25)

A=2.63+......................+22005.63

A=63.(2+..............................+22005)

VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.

28 tháng 10 2017

A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)

A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)

A=2.63+......................+2^2005.63

A=63.(2+..............................+2^2005)

VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.

TICK CHO MÌNH NHAleuleu

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

27 tháng 6 2018

D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)

D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)

D=8.(7+7^3+...+7^2009)

=> D chia hết cho 8

D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)

D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)

D=57.(7+7^4+...+7^2008)

=> D chia hết cho 57

chúc bạn học tốt nha

nhớ ủng hộ mk với nha

27 tháng 6 2018

a) A=2^1+2^2+2^3+...+2^2010

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)

A=3.(2+2^3+2^5+...+2^2009)

=> A chia hết cho 3

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)

A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)

A=7.(2+2^4+...+2^2008)

=> A chia hết cho 7

bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm