K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

a) Ta có : 51n=\(\overline{...1}\)

                47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)

\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)

Vậy 51n+47102\(⋮\)10.

b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)

                \(24^4=\overline{...6}\)

                 \(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)

\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)

Vậy 175+244+1321\(⋮\)10

2 tháng 10 2015

VD Câu b

\(17^5+24^4-13^{21}=17.17^4+24^4-13.\left(13^4\right)^5\)

Ta có

\(17^4\) có chữ số ttạn cùng là 1 => \(17^5=17.17^4\) có chữ số tận cùng là 7

\(24^4\) có chữ số tận cùng là 6

\(13^4\) có chữ số tận cùng là 1 => \(\left(13^4\right)^5\) có chữ số tận cùng là 1 => \(13^{21}=13.\left(13^4\right)^5\) có chữ số tận cùng là 3

=> \(17^5+24^4-13^{21}\) khi cộng, trừ các chữ số tận cùng là 7+6-3=10 => phép tính trên có chữ số tận cùng là 0 nên chia hết cho 10

16 tháng 10 2016

Chứng minh rằng:

a)8102 -2102  chia hết 10      

 b)175 + 244 -1321  chia hết 10  

21 tháng 2 2021

Vì chữ số tận cùng của \(51\)là 1 nên khi nâng lên luỹ thừa n thì chữ số tận cùng ko đổi

Vì chữ số tận cùng của 47 là 7 nên khi nâng lên luỹ thừa bậc 4n+2 thì chữ số tận cùng là 9

Ta có: \(51^n+47^{102}=....1+....9=....0⋮10\)

Vậy...........

21 tháng 10 2016

ta có 47102 thì ta so sánh chữ số cuối thì  thành 72 thì sẽ có tận cùng là 9 (72 =49)

mà 51n bao giờ cũng có tận cùng là 1

=>......1+........9= ......10 chia hết cho 10

24 tháng 10 2017

Ta có :

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)