K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.100}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 2-\frac{1}{50}\)

\(A< 2\)

b, \(B=2+2^2+2^3+...+2^{30}\)

Ta có :\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{29}\left(1+2\right)\)

\(B=2.3+2^3.3+...+2^{29}.3\)

\(B=3\left(2+2^3+...+2^{29}\right)\)chia hết cho 3(1)

Lại có\(B=\left(2+2^2+2^4\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

\(B=2\left(1+2+4\right)+...+2^{28}\left(1+2+4\right)\)

\(B=2.7+...+2^{28}.7\)

\(B=7\left(2+...+2^{29}\right)\) chia hết cho 7 (2) 

Mà (3,7)=1 (3) 

Từ (1)(2)(3) => B chia hết cho 21

26 tháng 4 2017

a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

b) Ta thấy : 21 = 3 .7        ( 3 ; 7 ) = 1

để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7

Ta có :

B = 21 + 22 + 23 + 24 + ... + 230

B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )

B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )

B = 2 . 3 + 23 . 3 + ... + 229 . 3

B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )

Lại có : B = 21 + 22 + 23 + 24 + ... + 230 

B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )

B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )

B = 2 . 7 + 24 . 7 + ... + 228 . 7

B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)21

4 tháng 3 2018

oh my goh

18 tháng 3 2018

Bài 1 Bài này sai đề bạn nhé!!!!

Bài 2:

a) 74n = (74)n =2401n

Mà 2401n luôn có tận cùng bằng 1

\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5

b)34n + 1 = (34)n . 3 = 81n . 3

Mà (......1)n luôn có tận cùng là 1

\(\Rightarrow\)(......1)n .3 tận cùng là 3

\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5

c)Câu này hình như sai đề bạn nhé!!!

d)92n + 1 = (92)n . 9 = 81n .9

Mà 81n luôn có tận cùng là 1

\(\Rightarrow\) 81n . 9 có tận cùng là 9

\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10

Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!

28 tháng 9 2017

a)A=(2+22)+(23+24)+...(29+210)

A=2(2+1)+23(1+2)+....+29(2+1)

A=3(2+23+25+27+29)

Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)

b)A=(2+22+23+24+25)+(26+27+28+29+210)

A=2(1+2+22+23+24)+26(1+2+22+23+24)

A=31(2+26) luon chia het cho 31 :))

28 tháng 9 2017

THANKS BN

6 tháng 10 2019

A = 2 + 22 + 23 + ....+ 230

A = ( 2 +22  + 2) + ... + ( 228 + 229 + 230 )

A = 2 . ( 1 + 2 + 22 ) + .... + 228 . ( 1 + 2 + 22 )

A = 2 . 7 + ... 228 . 7

Vậy A chia hết cho 7

6 tháng 10 2019

cậu b) mọi ng giúp mk vs

23 tháng 7 2019

a) Ta có: A = 1 + 3 + 32 + 33 + ... + 32015

A = (1 + 3 + 32 + 33 + 34) + ... + (32011 + 32012 + 32013 + 32014 + 32015)

A = 40 + ... + 32011(1 + 3 + 32 + 33 + 34)

A = 40 + ... + 32011.40

A = 40(1 + ... + 32011

A = 5.8(1 + ... + 32011\(⋮\)5

b) B = 2 + 22 + 23 + ... + 22016

B = (2 + 22 + 23 + 24) + ...+ (22013 + 22014 + 22015 + 22016)

B = 2(1 + 2 + 22 + 23) + ... + 22013(1 + 2 + 22 + 23)

B = 2.15 + ... + 22013. 15

B = (2 + ... + 22013) .15 \(⋮\)15