K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(A=1+2+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(2A-A=2+2^2+2^3+...+2^{2016}-1-2-2^2-....-2^{2015}\)

\(A=2^{2016}-1\)

\(=>A=B\)

15 tháng 10 2016

a,52ab : 2,5 => b thuộc 0( dấu : là dấu chia hết nhé ) 

Nếu b = 0 có : 

<=> 52a0 : 9 

<=> 5 + 2 + a +0 : 9 

<=> 7 + a : 9 

=> a thuộc 2 

nên 52ab = 5220

 

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

24 tháng 10 2016

Để 134xy chia hết cho 5 thì y = 0 hoặc 5

Nếu y = 0 thì 1 + 3 + 4 + x + 0 chia hetes cho 9

                            => 8 + x chia hết cho 9 

                                 => x = 1 

Nếu y = 5 thì 1 + 3 + 4 + x + 5 chia hết cho 9

                            => 13 + x chia hết cho 9 

                              => x = 5

24 tháng 10 2016

Vì 134xy chia hết cho 5

=> \(y\in\left\{0;5\right\}\)

Nếu  y = 0 thì x = 1

Nếu y = 5 thì x = 5

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right),\left(5;5\right)\right\}\)

Tương tự những cái còn lại nhé em, dựa vào dấu hiệu chia hết của mỗi số đó. J ko bik hỏi lại

10 tháng 4 2018

Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)

 De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)

\(\Rightarrow dpcm\)

11 tháng 4 2018

Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1

Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1

=>a2+b2 chia cho 3 dư 0,1 hoặc 2

Mà a2+b2 chia hết cho 3

=>a2+b2 chia cho 3 dư 0

=>a2 và b2 chia hết cho 3

Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3

Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3

Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3

Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và bphải chia hết cho 3 vậy ?