K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

10 tháng 12 2018

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

29 tháng 8 2019

Cầ gấp, cần gấp. Cao nhân nào đi qua xin chỉ giáo dùm

17 tháng 4 2020

Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình. 
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\ \)

Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)

Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))

Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)

\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)

Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))

Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)

Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)

Từ (1), (2) và (3) => ĐPCM

Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)