K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ghi từng câu thôi ai mak làm cho nổi Nhân tài ngùm hết lun đó

câu 3 hỏi cái j?

9 tháng 6 2015

Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

9 tháng 6 2015

Cho mình làm lại nha :

Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) 

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

25 tháng 12 2015

Thiếu !!!!!!!!

25 tháng 12 2015

đề cô giáo cho mình thế mà, thôi để mình hỏi lại cô. Cảm ơn các bạn đã góp ý!

30 tháng 12 2015

tick rồi mk giải chi tiết cho

24 tháng 1 2020

Câu hỏi của ngoc Ngoc - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

2 tháng 2 2017

2b nhé bạn!

Giả sử 2002+n2 là số chính phương m2

Hiển nhiên 2002 chia cho 4 dư 2

Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)

  • Nếu m2 dạng 4k

Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương

  • Nếu m2 dạng 4k+1

Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương

Vậy không tồn tại n để 2002+n2 là số chính phương