K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

a : 5 dư 4 => a = 5q + 4 

b : 5 dư 3 => b = 5k + 3 

a.b = ( 5k + 3 )( 5q + 4) = 25.k.q + 20k + 15q + 12  = 5 ( 5k.q + 4k + 3q + 2) + 2 

chia 5 dư 2

31 tháng 12 2021

Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )

Ta có :

\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)

\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)

\(=25.m.n+5.n+10.m\)chia cho 5 dư 2

Vậy a.b chia cho 5 dư 2

20 tháng 10 2016

cách giải

lời giải luôn 

1/ a=5k+2; b=5n+3 

(ab là a nhân b nếu là ab xẽ khác)

(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1

2/ a=7k+3

a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2

17 tháng 8 2016

1) dư 1

2)dư 2 k mình nha

17 tháng 7 2015

a : 5 dư 4 => a = 5q + 4

b chia 5 dư 3 => b = 5t + 3 

ab = (5q + 4)(5t + 3) = 25qt + 15q + 20t +12 = 25qt + 15q +20t + 10 + 2 = 5 ( 5qt + 3q + 4t + 2) + 2 chia 5 dư 2 

VẬy ab chia 5 dư 2

4 tháng 8 2017

Theo bài ra,a=5k+4 và b=5q+3

=>a*b=(5k+4)*(5q+3)

         =5k*5q+5k*3+4*5q+4*3

          =25*k*q+15*k+20*q+12

Dễ rồi nhé

4 tháng 8 2017

Ta có:

a : 5 ( R = 4 )

b : 5 ( R = 3 )

=> ab : 5  ( R = 2 ) { vì 4.3 : 5 ( R = 2 ) } 

22 tháng 6 2017

Ta  có:    a= 5k+1;   b= 5x +2; 

thì:  (5k+1)2+(5x+2)2=25k2+1+25x2+4=25(x2+k2)+5 chia hết cho 5;

Vậy tổng đó chia hết cho 5; ủng hộ nha bạn

17 tháng 11 2016

đó là số 6:20 dư 6

18 tháng 11 2016

Gọi số cần tìm là a ta có

a chia 5 dư 1 nên a - 1 chia hết cho 5 => a - 6 cũng chia hết cho 5

a chia 4 dư 2 nên a - 2 chia hết cho 4 => a - 6 cũng chia hết cho 4

Vì 4, 5 là nguyên tố cùng nhau nên a - 6 chia hết cho 20

Vậy a chia cho 20 dư 6

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .