Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3*5+1/5*7+1/7*9+...+1/97*99
=1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
=1/3-1/99
32/99
a) \(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{97.99}\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{3}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{3}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{32}{99}\)
\(=\frac{16}{33}\)
b)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}\)
\(=\frac{102}{103}\)
\(G=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+.....+\frac{1}{95.97.99}\)
\(=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+....+\frac{1}{95.97}-\frac{1}{97.99}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{97.99}\right)\)
\(=\frac{1}{4}.\frac{3200}{9603}=\frac{800}{9603}\)
số số hạng là
(99-1):2 + 1= 50(số)
tổng là
(99+1) x 50 : 2= 2500
đap số 2500
số số hạng :
(99-1):2+1=50(số hạng)
tổng:
(99+1)*50:2=2500
k cho chi nhe
A= 1 x 3 + 3 x 5 + 5 x7 +...+ 95 x 97 + 97 x 99
\(\Rightarrow6A=1x3x6+3x5x6+5x7x6+...+95x97x6+97x99x6\)
\(6A=1x3x\left(5+1\right)+3x5x\left(7-1\right)+5x7x\left(9-3\right)+...+95x97x\left(99-93\right)+97x99x\left(101-95\right)\)
\(6A=1x3x5+1x3+3x5x7-1x3x5+5x7x9-3x5x7+...+95x97x99-93x95x97\)
\(+97x99x101-95x97x99\)
\(6A=\left(1x3x5+3x5x7+5x7x9+...+95x97x99+97x99x101\right)-\)
\(\left(1x3x5+3x5x7+...+93x95x97+95x97x99\right)+1x3\)
\(6A=97x99x101+1x3\)
\(6A=969903+3\)
\(6A=969906\)
\(A=\frac{969906}{6}\)
\(A=161651\)
A=99-97+...+7-5+3-1
=[99-97]+..+[7-5]+[3-1]
=2+...+2+2
=2*50
100
A=99 - 97 + 95 - 93 + 91 - 89 + ... + 7 - 5 + 3 - 1
Ta thấy khoảng cách giữa 2 số liên tiếp là 2
-> Số lượng số hạng của dãy là :(99-1)/2 + 1 =50
Mà cứ 2 số là 1 cặp => có 50/2 =25 cặp tất cả
Vậy A=99 - 97 + 95 - 93 + 91 - 89 + ... + 7 - 5 + 3 - 1
= (99-97)+(95-93)+(91-89)+.....+(7-5)+(3-1)
= 2*25
=50
1,1 + 1,2 + 1,3 +... + 1,7 + 1,8 + 1,9
= (1,1 + 1,9) + (1,2 + 1,8) + (1,3 + 1,7) + (1,4 + 1,6) + 1,5
= 3 + 3 + 3 + 3 + 1,5
= 13,5
1 + 2 + 3 + 4 + ..... + 97 + 98 + 99 + 100
= (1 + 100) + (2 + 99) + (3 + 98) + .... + (54 + 57) + (55 + 56)
= 101 + 101 + 101 + ..... + 101 (50 số 101)
= 101 x 50 = 5050
1 + 3 + 5 + 7 + 9 + ...... + 93 + 95 + 97 + 99
= (1 + 99) + (3 + 97) + (5 + 95) + ..... + (49 + 51)
= 100 + 100 + 100 + .... + 100 (25 số 100)
= 100 x 25 = 2500
lấy 1.1+1.9+1.2+1.8+1.3+1.7+1.4+1.6+1.5=5.5
cái kia cũng làm tương tự
Bạn chép nhầm đề rồi
Đề đúng là
99-97+95-93+91-89+... +7-5+3-1
Khoảng cách giữa các số là:
3- 1= 2
Số các số hạng là:
( 99- 1)/ 2+ 1= 50
Tổng các số là:
( 99+ 1)* 50/ 2= 2500
Vậy A= 2500.
Tổng A gồm có:
( 99-1):(3-1)+1=50(số hạng)
Tổng A là:
( 99+1)x50:2=2500