K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

c) Áp dụng BĐT Cauchy-schwars ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)

                                                               đpcm

22 tháng 4 2020

a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)

Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b 

Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

Dấu "=" xảy ra <=> a = b 

b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)

<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)

<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a

Vậy (1) đúng 

Dấu "=" xảy ra <=> a = b = c.

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

22 tháng 4 2019

Chứng minh bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Có: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

abc = 1 => a^2.b^2.c^2 = 1

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(c+a\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\)
\(=\frac{\left(bc\right)^2}{ab+ac}+\frac{\left(ac\right)^2}{bc+ba}+\frac{\left(ab\right)^2}{ca+cb}\ge\frac{\left(ab+ac+bc\right)^2}{2\left(ab+ac+bc\right)}=\frac{\left(ab+ac+bc\right)}{2}\)
\(\ge\frac{3\sqrt[3]{ab.ac.bc}}{2}\)(Cauchy) \(=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\\frac{bc}{ab+ac}=\frac{ac}{bc+ba}+\frac{ab}{ca+cb}\Leftrightarrow\end{cases}a=b=c}\)

Mà abc=1 <=> a^3 = 1 <=> a=1 => b=c=a=1

https://diendantoanhoc.net/topic/80159-ch%E1%BB%A9ng-minh-frac1a2b3cfrac12a3bcfrac13bb2c-leqslant-frac316/

bạn tham khảo ở đây nhé

14 tháng 4 2018

đề sai ak

19 tháng 11 2018

thay 1=(abc)^2

16 tháng 10 2020

Xí trước phần b

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)

\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

16 tháng 10 2020

Cách làm khác của phần b ngắn gọn hơn:)

Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

2 tháng 3 2020

b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(b^2x^2+a^2y^2-2abxy\ge0\)
\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)} \)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
hihihihihihihihi