K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

Bài này bạn chịu khó tìm điểm rơi rồi áp BĐT AM-GM vào thôi:

Áp dụng BĐT AM-GM:

\(\sqrt{ab}=\frac{1}{2}\sqrt{a.4b}\leq \frac{a+4b}{4}\)

\(\sqrt[3]{abc}=\frac{1}{4}\sqrt[3]{a.4b.16c}\leq \frac{a+4b+16c}{12}\)

Cộng theo vế:
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\leq a+\frac{a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4}{3}(a+b+c)\)

\(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\Rightarrow a+b+c\geq 1\)

Vậy \((a+b+c)_{\min}=1\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)

Áp dụng BĐT AM-GM:

\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)

Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$

AH
Akai Haruma
Giáo viên
6 tháng 10 2018

Bài 2:
Áp dụng BĐT Cauchy-Schwarz:

\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)

\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)

Cộng những BĐT vừa cm được ở trên với nhau:

\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)

Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)

NV
1 tháng 2 2019

Do \(a,b,c>0\) nên theo quy tắc phân số: \(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

Tương tự: \(\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\); \(\dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Theo BĐT Cauchy: \(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\Leftrightarrow\dfrac{2}{a+b+c}\le\dfrac{1}{\sqrt{a\left(b+c\right)}}\)

\(\Leftrightarrow\dfrac{2a}{a+b+c}\le\sqrt{\dfrac{a}{b+c}}\)

Tương tự \(\dfrac{2b}{a+b+c}\le\sqrt{\dfrac{b}{a+c}}\); \(\dfrac{2c}{a+b+c}\le\sqrt{\dfrac{c}{a+b}}\)

(3 dấu = không thể đồng thời xảy ra, để chặt chẽ bạn có thể chia trường hợp)

Cộng vế với vế:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)

sai đề không ?

7 tháng 2 2018

ko sai đề. mình vừa nghĩ ra rồi

P=\(a+\frac{1}{2}\sqrt{a.4b}+\frac{1}{4}\sqrt[3]{a.4b.16c} \le a+\frac {a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4(a+b+c)}{3}=\frac{4}{3}\)

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2018

Lời giải:

Ta có:
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=(\sqrt{a})^3+(\sqrt{b})^3+2\sqrt{ab}\)

\(=(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)+2\sqrt{ab}\)

\(=(\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]+2\sqrt{ab}\)

Ta thấy \(\sqrt{a}+\sqrt{b}\in\mathbb{Q}; \sqrt{ab}\in\mathbb{Q}\) nên:

\((\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]\in\mathbb{Q}\)\(2\sqrt{ab}\in\mathbb{Q}\)

Do đó: \(A+B\in\mathbb{Q}\)

Mặt khác:

\(AB=\sqrt{a}(a+\sqrt{b}).\sqrt{b}(b+\sqrt{a})\)

\(=\sqrt{ab}(a+\sqrt{b})(b+\sqrt{a})\)

\(=\sqrt{ab}(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab})\)

\(=\sqrt{ab}(A+B)\)

Do $A+B$ là số hữu tỉ (cmt) và $\sqrt{ab}$ cũng là số hữu tỉ, nên \(AB\) là số hữu tỉ.

20 tháng 7 2018

Bác Akai Haruma làm nhầm đoạn cuối. Chắc do học nhiều nên mệt. Mình đại diện các bạn khác tiếp sức cho bác.

\(AB=\sqrt{ab}\left(a+\sqrt{b}\right)\left(b+\sqrt{a}\right)\)

\(=\sqrt{ab}\left(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab}\right)\)

\(=\sqrt{ab}\left(ab-\sqrt{ab}+a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\right)\)

\(=\sqrt{ab}\left(ab-\sqrt{ab}+A+B\right)\)

\(\left\{{}\begin{matrix}A+B\in Q\\\sqrt{ab}\in Q\\ab\in Q\end{matrix}\right.\)

\(\Rightarrow AB\in Q\)