K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

lay 3-VT la xong ban ak,day la phuongphap dao dau ma

NV
10 tháng 10 2020

- Nếu cả 3 số đều bằng 0 thì BĐT hiển nhiên đúng

- Nếu \(a+b+c\ne0\)

Do \(0\le a;c\le1\Rightarrow\left(a-1\right)\left(c-1\right)\ge0\)

\(\Leftrightarrow ac+1\ge a+c\)

\(\Leftrightarrow ac+b+1\ge a+b+c\)

\(\Leftrightarrow\frac{c}{ac+b+1}\le\frac{c}{a+b+c}\)

Hoàn toàn tương tự, ta có: \(\frac{a}{ab+c+1}\le\frac{a}{a+b+c};\) \(\frac{b}{bc+a+1}\le\frac{b}{a+b+c}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\) và hoán vị

14 tháng 10 2018

Áp dụng bđt cauchy dạng engel ta có:

\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+b^2+c^2+c^2+a^2+1+1+1}\)

\(=\frac{9}{2\left(a^2+b^2+c^2\right)+3}\le\frac{9}{2\left(ab+bc+ca\right)+3}=\frac{9}{2.3+3}=1\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c

14 tháng 10 2018

Hình như bạn sai thì phải nhưng mình lỡ k r

1 bên \(\ge\)

1 bên \(\le\)

Sao so sánh đc

7 tháng 1 2020

lol

10 tháng 1 2020

không hiểu kiểu gì

8 tháng 5 2019

\(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)

\(A=\frac{1}{ab+b+1}+\frac{ab}{abc.b+abc+ab}+\frac{b}{abc+ab+b}\)

Thay \(abc=1\) , ta có:

\(A=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{ab+b+1}{ab+b+1}=1\)

8 tháng 5 2019

Nguyễn Thị Ngọc ThơHỏi đáp Toán