Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)12a<15a
Ta có:12<15 để có bất đẳng thức
12a<15a ta phải nhân cả 2 vế của bất đẳng thức 12<15 vs số a
Để đc bất đẳng thức cùng chiều thì a<0
b)4a<3a
Vì 4>3 và 4a<3a trái chiều.Để nhân 2 vế của bất đẳng thức 4>3 vs a đc bất đẳng thức trái chiều thì a<0
c)-3a>-5a
Từ -3 > -5 để có -3a > -5a thì a phải là số dương
a) Ta có: 12 < 15. Để có bất đẳng thức
12a < 15a ta phải nhân cả hai vế của bất đẳng thức 12 < 15 với số a.
Để được bất đẳng thức cùng chiều thì a > 0
b) Vì 4 > 3 và 4a < 3a trái chiều. Để nhân hai vế của bất đẳng thức 4 > 3 với a được bất đẳng thức trái chiều thì a < 0
c) Từ -3 > -5 để có -3a > -5a thì a phải là số dương
a) Do -8 < 4 nên a < 0 b) Do 5 ≤ 30 nên a ≥ 0
c) Do 6 < 12 nên a ≤ 0. d) Do -5 < 15 nên a < 0.
Ta có: 12 < 15 (*). Để có bất đẳng thức cùng chiều là 12a < 15a ta phải nhân cả hai vế của (*) với số dương. Vậy a là số dương.
Dể \(\left|x-7\right|=3x-1\) có nghiệm thì \(3x-1\ge0\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
Khi đó phương trình trở thành
\(\orbr{\begin{cases}x-7=3x-1\\x-7=1-3x\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=6\\4x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Mấy cái phương trình đó bạn tự giải nhé
Vậy.......................................................................................................
\(0,2x< 0,6\Leftrightarrow x< 3\)(cái này bạn cũng tự giải nốt nhé)
a) \(|x-7|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=1-3x\\x-7=3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=8\\-2x=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;2\right\}\)
b) \(0,2x< 0,6\)
\(\Leftrightarrow x< 3\)
Vậy phương trình có tập nghiệm \(\left\{x/x< 3\right\}\)
c) \(4a< 3a\)
\(\Leftrightarrow a< 0\)
Vậy nếu 4a < 3a thì a âm
Ta có: 4 > 3 (**). Để có bất đẳng thức ngược chiều là 4a < 3a ta phải nhân cả hai vế của (**) với số âm. Vậy a là số âm.
a)ta có: \(-4a>18a\)
⇒\(\left(-4\right).a>18.a\)
mà \(-4< 18\)
⇒ \(a\) là số âm
b)ta có: \(-15a< -13a\)
⇒\(\left(-15\right).a< \left(-13\right).a\)
mà \(-15< -13\)
⇒ \(a\) là số dương