K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\cdot\left(2+...+2^{59}\right)⋮3\)

\(B=2+2^2+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

23 tháng 10 2021

vui

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

10 tháng 10 2016

a,19^2005+ 11^2004 =19^4.501.19

                              =x1.x9

                              =x9

11^2004=11^4.501

            =x1

x1+x9= y0

suy ra điều cần phải chứng minh 

tương tự 2 câu còn lại

NM
16 tháng 8 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

14 tháng 8 2024

Dễ mà bn tự làm đi

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

4 tháng 8 2023

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

23 tháng 12 2024

HHehe

28 tháng 7 2017

b) \(n+7⋮n\)

Mà: \(n⋮n\)

\(\Rightarrow7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)

Vậy giá trị n cần tìm là: n=1;-1;7;-7

\(n+11⋮n+9\)

\(\Rightarrow\left(n+9\right)+2⋮n+9\)

Do: \(n+9⋮n+9\)

\(\Rightarrow2⋮n+9\)

\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

Lập bảng giá trị:

n+912-1-2
n-8-7-10-11

Vậy giá trị n cần tìm là: n=-8;-7;-10;-11

\(2n+13⋮n+3\)

\(\Rightarrow2\left(n+3\right)+7⋮n+3\)

Vì: \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Lập bảng giá trị:

n+317-1-7
n-24-4-10

Vậy giá trị n cần tìm là: n=-2;4;-4;-10