Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(110b=\overline{bb0}\le\overline{bba}\le\overline{bb9}=\overline{bb0}+9\le\overline{bbb}+9\le b\cdot111+9b=b\cdot120.\)
\(\Rightarrow110b\le\overline{bba}\le120b\)(1).
Tương tự ta có: \(1000b\le\overline{bccd}\le2000b\)(2)
Từ (1) và (2) suy ra:
\(\frac{1000b}{120b}\le\frac{\overline{bccd}}{\overline{bba}}=a\cdot a\le\frac{2000b}{110b}\Rightarrow8,33< a\cdot a< 18,18\)(*)
d lẻ nên bccd lẻ => a lẻ.
a lẻ thỏa mãn (*) => a = 3. => d = 7.
Bài toán trở thành: 9xbb3 = bcc7
<=> 9*(110b +3) = 1000b + 110c +7
<=> 20 = 10b +110c
<=>2 = b + 11c. Suy ra c = 0 và b = 2.
Vậy a = 3; b = 2; c = 0 và d = 7. ta có: 3x3x223 = 2007.
đặt b=2,c=0,d=7,a=3
thử: a*a*bba= 3*3*223=2007=bccd
(câu trên)
Ta có:
ab - ba = 27
=> (10a + b) - (10b + a) = 27
=> 10a + b - 10b - a = 27
=> 9a - 9b = 27
=> 9.(a - b) = 27
=> a - b = 27 : 9 = 3
Lại có: a + b = 9
=> b = (9 - 3) : 2 = 3; a = 3 + 3 = 6
Vậy ab = 63
Ta có a x b x ab = b x 111
=> a x ab = 111
mà 111 = 1 x 111 hoặc 111 = 3 x 37
Do ab là số có hai chữ số nên ab = 37
=> a = 3 và b = 7
Ta có a x b x ab = b x 111
=> a x ab = 111
mà 111 = 1 x 111 hoặc 111 = 3 x 37
Do ab là số có hai chữ số nên ab = 37
=> a = 3 và b = 7
Vậy số cần tìm là 37
Trình bày rõ ràng giúp mình nha!
Lưu ý : a,b,c,m,n khác nhau và khác 2!
Vì d là số lẻ nên a cũng là số lẻ
Vì a,b,c khác nhau nên a không thể là 1,5,9
Vậy a có thể là 3 hoặc 7
Xét a=3 ta có :
3 x 3 x 3bb =7bcc
9 x 3bb=7bcc
9 x (110 x b +3)=1000 x b+110 x c + 7
990 x b +27 =1000 x b +110 x c +7
20 = 10 xb + 110 x c Chỉ xẩy ra khi 2 = b + 11 x c Chỉ xẩy ra khi b = 2 ; c = 0.
Những số tự nhiên cần tìm là : a = 3; b = 2; c = 0; d = 7
Xét a = 7 ta thấy không bao giờ xẩy ra vì 7 x 7 x bba sẽ là số có năm chữ số.
Đáp số: a = 3; b = 2; c = 0; d = 7
yêu cầu của bài là j vậy bn