Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hỏi chút
\(\frac{a}{b}=\frac{c}{d}\)
trong đó
\(a=c\) hay \(a\ne c\)
\(b=d\) hay \(b\ne d\)
( bài có thiếu điều kiện ko vậy )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)
\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)
\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)
Từ (1) và (2) => đpcm
uk . mk thấy bạn đăng nhưng ko ai trả lời thì mk đăng hộ vs cả bài này mk cũng biết làm hihi
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)
\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)
\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)
Vậy.....
\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)
Vậy....