K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10

A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10

A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10

A = 0 + (3\(x-3x\)) - 10

A = 0  - 10

A = - 10 

11 tháng 4 2018

Giải:

a) Để đa thức có nghiệm

\(\Leftrightarrow x^2-64=0\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x=\pm8\)

Vậy ...

d) Để đa thức có nghiệm

\(\Leftrightarrow x^2-81=0\)

\(\Leftrightarrow x^2=81\)

\(\Leftrightarrow x=\pm9\)

Vậy ...

h) Để đa thức có nghiệm

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow\left(x-6\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy ...

Các câu còn lại làm tương tự.

11 tháng 4 2018

a, x\(^2\) - 64 = 0

\(\Rightarrow\) x\(^2\) = 0 + 64

= 64

= 8\(^2\)

\(\Rightarrow\) x = 8

Vậy nghiệm của \(x^2-64\) là 8

d, \(x^2-81\) = 0

\(\Rightarrow\) x\(^2\) = 81

= 9\(^2\)

\(\Rightarrow\) x = 9

vậy nghiệm của \(x^2-81\) là 9

1 tháng 7 2019

1) 30x-30x^2-31

2)6x^4-2x^3-15x^2+23x-6

11 tháng 8 2020

Bài 1: tìm nghiệm của đa thức.

a) A(x) =\(\frac{1}{3}\)x + 1

⇔ 0 = \(\frac{1}{3}x+1\)

⇔ 0 = x + 3

⇔ -x = 3

⇔ x = -3

b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)

⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)

⇔ 0 = 10x + 3

⇔ -10x = 3

⇔ x = \(-\frac{3}{10}\)

c) C(x) = (4x-1) . (2x+3)

⇔ 0 = (4x - 1).(2x + 3)

⇔ (4x -1).(2x +3) = 0

\(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)

d) D(x) = (-5x+2).(x-7)

⇔ 0 = (-5x +2).(x - 7)

⇔ (-5x +2).( x -7) = 0

\(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)

e) E(x) = -4x2+8x

⇔ 0 = -4x2 + 8x

⇔ -4x2 + 8x = 0

⇔ -4x.(x-2) = 0

⇔ x.(x-2) = 0

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Bài 6; tìm đa thức A biết :

a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy

A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy

A= -6x2y + 13xy2 - 4xy

b) 4x2 -7x +1- A = 3x2 -7x -1

⇔ 4x2 + 1 - A = 3x2 -1

-A= 3x2 -1 -4x2 -1

-A= -x2 - 2

A= x2 + 2

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

a,\(\left(3x^2.y^2\right).\left(-2xy^2\right)\)

\(=\left(-6\right).x^3.y^4\)

Hok tốt

b,\(4x^4.y^2+3x^4.y^2\)

=\(7.x^4.y^2\)

Hok tốt

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

a,x^2-7x=0

<=>x(x-7)=0

<=>th1 x=0

th2 x-7=0=>x=7

vậy x=0 hoặc 7

24 tháng 6 2019

\(a^2-7a=0\)

\(\Rightarrow a\left(a-7\right)=0\)

\(\Rightarrow\hept{\begin{cases}a=0\\a-7=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\a=7\end{cases}}\)

2 tháng 8 2017

đoạn 2.13/60 là hỗn số nhé

mn lm ơn giúp mình với

10 tháng 4 2018

1

a, 4x2+4x+2

= 2x2+2x2+2x+2x+2

= 2x2+(2x2+2x)+(2x+2)

= 2x2+ 2x(x+1)+2(x+1)

= 2x2+(2x+2)(x+1)

= 2x2+2(x+1)(x+1)

=2x2+2(x+1)2

Để 2x2+2(x+1)2=0

=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)

=> đa thức 4x2+4x+2 vô nghiệm

10 tháng 4 2018

1

b, y2+6y+10

= y2+3y+3y+9+1

= y(3+y)+3(y+3)+1

= (y+3)(y+3)+1

= (y+3)2+1

Có (y+3)2\(\ge\)0;1>0

=> (y+3)2+1>0

=> y2+6y+10 vô nghiệm

26 tháng 3 2019

a) x^2+4x-5=0<=> (x-1)(x+5)=0<=>x-1 hoặc x+5=0<=> x=1 hoặc x=-5

b) x^2-4x-5=0<=> (x+1)(x-5)=0<=> x+1=0 hoặc x-5=0<=> x=-1 hoặc x=5

c) phân tích (x+1)(x+4)

d)(x-1)(x-4)

e)....

Mấy câu này tương tự