K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(9x^2-12xy+16y^2=\left(3x-4y\right)^2>=0\)(luôn đúng)

b: \(16a^2-30ab+25b^2=\left(4a-5b\right)^2>=0\)(luôn đúng)

\(9x^2-12xy+16y^2\)

\(=\left(3x\right)^2-2.\left(3x\right)\left(4y\right)+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

3 tháng 8 2016

\(P=\frac{x^2}{4}+x^2+1=\left(\frac{x}{2}\right)^2+2.x^2.\frac{1}{2}+1=\left(\frac{x}{2}+1\right)^2\)

2, a, \(9x^2-12x+9=\left(3x\right)^2-2.3.x.3+3^2=\left(3x-3\right)^2\ge0\)

3 tháng 8 2016

giai gium minh voi

 

a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)

c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

13 tháng 7 2017

Tính:

a) (2x + 3)3 = (2x)3 + 3.(2x)2.3 + 3.2x.32 + 33 = 8x3 + 36x2 + 54x + 27

b) (2x - 3)(4x2 + 6x + 9) = (2x - 3)[(2x)2 + 2x.3 + 32] = (2x)3 - 33 = 8x3 - 27

c) (3x + 4y)(9x2 - 12xy + 16y2) = (3x + 4y)[(3x)2 - 3x.4y + (4y)2] = (3x)3 + (4y)3 = 27x3 + 64y3.

13 tháng 7 2017

a. (2x+3)3 = (2x)3+3.(2x)2.3+3.2x.32+33=8x +36x2+54x2+9=8x+90x2+9

b. (2x-3) (4x2+6x+9) = 2x.4x2+2x.6x+2x.9-3.4x2-3.6x-3.9 = 8x3+12x2+18x-12x2-18x-27 = 8x3-27

c. (3x+4y) (9x2-12xy+16y2) = 3x.9x2-3x.12xy+3x.16y2+4y.9x2-4y.12xy+4y.16y2= 27x3-36x2y+48xy2+36x2y-48xy2+64y3

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

13 tháng 7 2017

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

13 tháng 7 2017

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

23 tháng 8 2020

a) 9 + 10ab - a2 - 25b2 = 9 - (a2 - 10ab + 25b2)

= 9 - (a - 5b)2

= (3 - a + 5b)(3 + a - 5b)

b) 16x2 - (x2 - 2x + 1) = 16x2 - (x - 1)2

= (4x - x + 1)(4x + x - 1)

= (3x + 1)(5x - 1)

d) 12xy2 + 27y2 - 3y3 - 12x2 = 3(4xy2 + 9y2 - y3 - 4x2)

f) x4 + 64y4 = x4 + 16x2y2 + 64y4 - 16x2y2

= (x2 + 8y2)2 - 16x2y2

= (x2 - 4xy + 8y2)(x2 + 4xy + 8y2)

Bài 1: 

a: \(=x^2-2xy+y^2-x^2+2xy=y^2\)

b: \(=x^2-2xy+y^2+x^2+2xy-x^2-2xy-y^2\)

\(=x^2-2xy\)

Bài 3: 

a: \(\Leftrightarrow x^2-4-7=x^2-2x+1\)

=>-2x+1=-11

=>-2x=-12

hay x=6

b: =>(x-3)(x-3-x-3)=0

=>x-3=0

hay x=3