Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(-9x^2+12xy-4y^2\)
\(=-\left(9x^2-12xy+4y^2\right)\)
\(=-\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]\)
\(=-\left(3x-2y\right)^2\)
b) Ta có: \(-125a^3+75a^2-15a+1\)
\(=\left(-5a\right)^3+3\cdot\left(-5a\right)^2\cdot1+3\cdot\left(-5a\right)\cdot1^2+1^3\)
\(=\left(-5a+1\right)^3\)
\(=\left(1-5a\right)^3\)
c) Ta có: \(64-96a+48a^2-8a^3\)
\(=4^3-3\cdot4^2\cdot2a+3\cdot4\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=\left(4-2a\right)^3\)
\(=\left[2\cdot\left(2-a\right)\right]^3\)
\(=8\left(2-a\right)^3\)
d) Ta có: \(-\frac{1}{8}m^3n^6-\frac{1}{27}\)
\(=-\left(\frac{1}{8}m^3n^6+\frac{1}{27}\right)\)
\(=-\left[\left(\frac{1}{2}mn^2\right)^3+\left(\frac{1}{3}\right)^3\right]\)
\(=-\left(\frac{1}{2}mn^2+\frac{1}{3}\right)\left(\frac{1}{4}m^2n^4-\frac{1}{6}mn^2+\frac{1}{9}\right)\)
\(12xy-4x^2y+8xy^2\)
\(=4xy\left(3-x+2y\right)\)
\(-125a^3+75a^2-15a+1\)
\(=-\left(125a^3-75a^2+15a-1\right)\)
\(=-\left[\left(5a\right)^3-3.\left(5a\right)^2.1+3.5a.1^3-1^3\right]\)
\(=-\left(5a-1\right)^3\)
a) \(16x^2-\left(x^2+4\right)^2=\left(4x\right)^2-\left(x^2+4\right)^2\)
\(=\left(4x+x^2+4\right)\left(4x-x^2-4\right)\)
\(=\left(x+2\right)^2\left\{-\left(x^2-4x+4\right)\right\}=\left(x+2\right)^2\left\{-\left(x-2\right)^2\right\}\)
Ở đây mình không đổi \(-\left(x-2\right)^2=\left(2-x\right)^2\)được vì vốn dĩ \(\left(x-2\right)^2=\left(2-x\right)^2\)
b) \(\left(x^2+9\right)^2-36=\left(x^2+9\right)^2-6^2\)
\(=\left(x^2+9+6\right)\left(x^2+9-6\right)=\left(x^2+15\right)\left(x^2-3\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
f) \(x^4y^4-z^4=\left\{\left(x^2y^2\right)^2-\left(z^2\right)^2\right\}\)
\(=\left\{\left(xy\right)^2-z^2\right\}\left\{x^2y^2+z^2\right\}\)
\(=\left(xy-z\right)\left(xy+z\right)\left(x^2y^2+x^2\right)\)
d)
$8y-2y^3+8xy^2-8x^2y=2y(4-y^2+4xy-4x^2)$
$=2y[4-(4x^2-4xy+y^2)]=2y[2^2-(2x-y)^2]$
$=2y(2-2x+y)(2+2x-y)$
e)
$4x^2(x-3)+9(3-x)=4x^2(x-3)-9(x-3)=(x-3)(4x^2-9)=(x-3)[(2x)^2-3^2]$
$=(x-3)(2x-3)(2x+3)$
f)
$x^4y^4+64=(x^2y^2)^2+8^2=(x^2y^2)^2+2.x^2y^2.8+8^2-16x^2y^2$
$=(x^2y^2+8)^2-(4xy)^2=(x^2y^2+8-4xy)(x^2y^2+8+4xy)$
a)
$4b-6a^2b+8a-3ab^2$
$=(4b-3ab^2)+(8a-6a^2b)$
$=b(4-3ab)+2a(4-3ab)=(b+2a)(4-3ab)$
b)
$4-4y^2+12xy-9x^2=4-(9x^2-12xy+4y^2)$
$=2^2-(3x-2y)^2=(2-3x+2y)(2+3x-2y)$
c)
$x^2-3x-10=x^2-5x+2x-10=x(x-5)+2(x-5)=(x+2)(x-5)$
Bài 1:
\(B=\dfrac{1}{9}x^2-2x+9\)
\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)
\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)
\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
\(E=\left(x-2y\right)^3\)