Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a=999..1 ,2004 chữ số 9
=> a=999...0+1 .2004 chữ số 9
=>ab=999...0*222..222 +2222...2222 (có 2004 chữ số 9 ; 2005 chữ số 2 );
Tổng các chữ số của 222..222 (2005 chữ số 2 ) là 2*2005 =4010
Có 4005 chia hết cho 3
=> 222...222(2005 chữ số 2 )-5 chia hết cho 3
Lại có 999...0*222..222 (có 2004 chữ số 9 ; 2005 chữ số 2 ) chia hết cho 3
=>ab-5 chia hết cho 3
Ta thấy : 91 x 22 = 2002
991 x 222 = 220002
...........
Dùng quy nạp ta chứng minh được:
99...91 x 22...2 = 2...20..0...2 (2004 chữ số 2, 2005 chữ số 0)
Vậy thì a x b - 5 = 22...219...97 (2003 chữ số 2, 2005 chữ số 9)
Tổng các chữ số của a x b - 5 là: 2 x 2003 + 1 + 9 x 2005 + 7 = 22059 chia hết 3
Vậy a x b - 5 chia hết cho 3.
(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2
=a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2
=a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)
b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004
Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)
\(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010
Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)