Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha
7S=7+7^2+7^3+7^4+...+7^2016
=>7S-S=(7+7^2+7^3+7^4+...+7^2016)-(1+7+7^2+7^3+...+7^2015)
=>6S=7^2016-1
=>6S+1=7^2016-1+1=7^2016(đpcm)
là sao mình không hiểu đề bài
bạn có thể viết rõ hơn k
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)