Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
\(A=-5x^2-4x+7\)
\(\Leftrightarrow-5A=25x^2+20x-35\)
\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)
\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)
Ta có:
\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)
Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)
a 2x-x^2-4 = - (x^2-2x+4)= -(x-2)^2
để -(x-2)^2 lớn nhất suy ra (x-2)^2 nhỏ nhất suy ra (x-2)^2 nhỏ nhất là 0 suy ra -(x-2)^2 nhỏ nhất là 0
b 1-4x-5x^2= 1 -(4x +5x^2) = 1- 4x( 1 + 5/4x)
để b lớn nhất suy ra 1-4x(1+5/4x) lớn nhất suy ra 4x(1+5/4x ) nhỏ nhất
nếu 4x âm suy ra x âm vì 5/4>1 nếu x âm suy ra -5/4x > 1 suy ra x âm thì 1+5/4 x âm suy ra b dương
4x dương suy ra x dương suy ra 1+5/4x dương suy ra b dương
vậy 4x(1+5/4x) k thể âm để 4x(1+5/4x) nhỏ nhất suy ra 4x(1+5/4x) = 0
4x = 0 suy ra x=0 1+5/4x = 0 suy ra 5/4x = -1 suy ra x=-4/5
suy ra b nhỏ nhất là 1-0 = 1
a)\(A=-5x^2-4x+1\)
\(=\frac{9}{5}-\frac{4}{5}-5x^2-4x\)
\(=\frac{9}{5}-\left(5x^2+4x+\frac{4}{5}\right)\)
\(=\frac{9}{5}-5\left(x^2+\frac{4x}{5}+\frac{4}{25}\right)\)
\(=\frac{9}{5}-5\left(x+\frac{2}{5}\right)^2\le\frac{9}{5}\)
Dấu = khi \(-\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x+\frac{2}{5}=0\Leftrightarrow x=-\frac{2}{5}\)
Vậy \(Max_A=\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)
bài này yêu cầu tìm GTNN (Min)sao bạn lại ghi là max vậy