Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{-5}\) và x - y = -7
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = -2,y = 5
b) Vì \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\forall x\\\left(y+0,4\right)^{100}\ge0\forall y\\\left(z-3\right)^{678}\ge0\forall z\end{cases}}\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
=> x = 1/5 , y = -0,4 , z = 3
Ở phần câu b ghi thêm dấu " = " xảy ra khi \(\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\)nhé
Ta có :
(x−15)2014+(y+0,4)100+(z−3)678=0(x−15)2014+(y+0,4)100+(z−3)678=0
Mà ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪(x−15)2014≥0(y+0,4)100≥0(z−3)678≥0{(x−15)2014≥0(y+0,4)100≥0(z−3)678≥0
⇔(x−15)2014+(y+0,4)100+(z−3)678≥0⇔(x−15)2014+(y+0,4)100+(z−3)678≥0
Lại có : (x−15)2014+(y+0,4)100+(z−3)678=0(x−15)2014+(y+0,4)100+(z−3)678=0
⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪(x−15)2014=0(y+0,4)100=0(z−3)678=0⇔{(x−15)2014=0(y+0,4)100=0(z−3)678=0
⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x−15=0y+0,4=0z−3=0⇔{x−15=0y+0,4=0z−3=0
⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x=15y=−0,4z=3
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^6=0.\)
\(Nx:\left(x-\frac{1}{5}\right)^{2004}\ge0;\left(y+0,4\right)^{100}\ge0;\left(z-3\right)^{678}\ge0\)
\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\)
\(\left(x-\frac{1}{5}\right)^{2004}\Leftrightarrow x-\frac{1}{5}=0\Leftrightarrow x=\frac{1}{5}\)
\(\left(y+0,4\right)^{100}=0\Leftrightarrow y+0,4=0\Leftrightarrow y=-0,4\)
\(\left(z-3\right)^{678}=0\Leftrightarrow z-3=0\Leftrightarrow z=3\)
Vậy \(x=\frac{1}{5};y=-0,4;z=3\)
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{matrix}\right.\forall x,y,z.\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\) \(\forall x,y,z.\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+\frac{1}{5}\\y=0-0,4\\z=0+3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\frac{1}{5};-0,4;3\right\}.\)
Chúc bạn học tốt!
Bài 1:
a)Ta có:
\(\frac{4}{5}\left(\frac{7}{2}+\frac{1}{4}\right)^2=\frac{4}{5}\left(\frac{15}{4}\right)^2=\frac{4}{5}.\frac{15}{4}.\frac{15}{4}=\frac{45}{4}\)
b)Ta có:
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
Bài 2:
Ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{10}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{20}{7}\\y=\frac{-50}{7}\end{matrix}\right.\)
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
a) \(\frac{4}{5}\)✖\(\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
= \(\frac{4}{5}\)✖ \((\frac{15}{4})^2\)
= \(\frac{4}{5}\)✖ \(\frac{225}{16}\)
= \(\frac{1}{1}\times\frac{45}{4}\)
= \(\frac{45}{4}\)