Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
a, \(\frac{x+1}{5}=\frac{3}{7}\Rightarrow7\left(x+1\right)=15\Rightarrow7x+7=15\Rightarrow7x=8\Rightarrow x=\frac{8}{7}\)
b, \(\frac{x-2}{3}=\frac{3}{8}\Rightarrow8\left(x-2\right)=9\Rightarrow8x-16=9\Rightarrow8x=25\Rightarrow x=\frac{25}{8}\)
c, \(\frac{-x-1}{2}=\frac{-3}{5}\Rightarrow5\left(-x-1\right)=-6\Rightarrow-5x-5=-6\Rightarrow-5x=-1\Rightarrow x=\frac{1}{5}\)
d, \(\frac{4}{5-x}=\frac{1}{3}\Rightarrow5-x=12\Rightarrow x=-7\)
e, \(2x\left(x-\frac{1}{7}\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x-\frac{1}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
\(\left(\frac{-7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}=\frac{-7}{4}\cdot\frac{8}{5}\cdot\frac{11}{16}=\frac{-7.11}{4.5.2}=\frac{-77}{40}\)
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}<\frac{1}{11^{21}}\) Vì 2733 > 1133 > 1121
a) (2x)5 : 43 = 815 => 25x = 815.43 = (23)15.(22)3 = 245.26 = 251 => 5x = 51 => x = 10,2
b) (32)x .93 = 2439 => 32x = 2439 : 93 = (35)9 : (32)3 = 345 : 36 = 339 => 2x = 39 => x = 19,5
c) (1/125)3.5x = 255 => 5x = 255 : (1/125)3 = (52)5 : (1/53)3 = 510 : (5-3)3 = 510 : 5-9 = 519 => x = 19
d) 1/81 : 3x = 1/729 => 3x = 1/81 : 1/729 = 1/34.729 = 3-4.36 = 32 => x = 2
e) (5x - 2)4 = 168 = (162)4 = 2564
=> 5x - 2 = -256 ; 256 => 5x = -254 ; 258 => x = -50,8 ; 51,6
P/S : Thay x = 10,2 vào câu a , x = 19,5 vào câu b sẽ thấy điều hư cấu : 210,2 và 919,5.Ko thể tính được giá trị của 2 lũy thừa này.
Có: \(A=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=...........................\)
\(=\frac{3^{32}-1}{2}\)
\(B=3^{32-1}\)
=> \(A< B\)