Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + ... + 311 C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 ) C = 1 ( 1 + 3 + 32 ) + 33 ( 1 + 3 + 32 ) + ... + 39 ( 1 + 3 + 32 ) C = 1 . 13 + 33 . 13 + ... + 39 . 13 C = 13 ( 1 + 33 + ... + 39 ) chia hết cho 13 => C chia hết cho 13 ( đpcm )
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
Ta có:
3+32+33+34+35...+396
=(3+32+33+34+35+36)+(37+38+39+310+311+312)+...+(391+392+393+394+395+396)
=(1+3+32+33+34+35).3+(1+3+32+33+34+35).37+...+(1+3+32+33+34+35).391
=(1+3+32+33+34+35).(3+37+...+391)
=1092.(3+37+...+391)
=7.156.(3+37+...+391) chia hết cho 7
Vậy 3+32+33+34+...+396 chia hết cho 7
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
bài này phải xét 3 trường hợp
trường hợp A chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=(1+2)(2+2^3+...+2^59)
=3(2+2^3+...+2^59) chia hết cho 3
trường hợp A chia hết cho 5
nhóm (2+2^3)+(2^2+2^4)+...+(2^58+2^60) rồi làm tương tự
trường hợp A chia hết cho 7
nhóm (2+2^2+2^3)+...+(2^58+2^59+2^60) rồi làm tương tự
CÓ khi nào sai đề bài không?
ko sai đâu ạ