Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3:\left(\dfrac{9}{4}\right)=\dfrac{3}{4}:\left(6.x\right)\\ \Rightarrow3.6.x=\dfrac{3}{4}.\dfrac{9}{4}\\ x=\dfrac{3}{4}.\dfrac{9}{4}.\dfrac{1}{3}.\dfrac{1}{6}\\ x=\dfrac{3}{4.4.2}\\ x=\dfrac{3}{32}\)
b)
\(4,5:0,3=\left(5.0,09\right):\left(0,01.x\right)\\ 0,01.x.4,5=5.0,09.0,3\\ x=5.\dfrac{9}{100}.\dfrac{3}{10}.100.\dfrac{10}{45}\\ x=3\)
d)
\(\left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}:\dfrac{2}{25}\\ \left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}.\dfrac{25}{2}\\ x:\dfrac{7}{4}=\dfrac{25}{2}:\dfrac{1}{9}\\ x=\dfrac{25}{2}.9.\dfrac{7}{4}\\ x=\dfrac{1575}{8}\\ x=196\dfrac{7}{8}\)
e)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\\ -x.x=-2.\dfrac{8}{25}\\ -x^2=-\dfrac{16}{25}=-\dfrac{4^2}{5^2}\\ -x^2=-\left(\dfrac{4}{5}\right)^2\\ \Rightarrow x=\dfrac{4}{5}\)
Chúc bạn học tốt
a) \(5^n.25=125^2\)
\(\Rightarrow5^n.5^2=\left(5^3\right)^2\)
\(\Rightarrow5^n.5^2=5^6\)
\(\Rightarrow5^n=5^6:5^2\)
\(\Rightarrow5^n=5^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
b) \(3^n.9^2=27^3\)
\(\Rightarrow3^n.\left(3^2\right)^2=\left(3^3\right)^3\)
\(\Rightarrow3^n.3^4=3^9\)
\(\Rightarrow3^n=3^9:3^4\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)
Vậy \(n=5.\)
c) \(2^4.4^n=8^6\)
\(\Rightarrow\left(2^2\right)^2.4^n=2^{18}\)
\(\Rightarrow4^2.4^n=\left(2^2\right)^9\)
\(\Rightarrow4^2.4^n=4^9\)
\(\Rightarrow4^n=4^9:4^2\)
\(\Rightarrow4^n=4^7\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
B1. phân a tui ko bt nha :>
\(B=\frac{2^{13}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{13}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}\)
\(=\frac{2^{13}\cdot3^8}{2^6\cdot3^6\cdot2^9}\)
\(=\frac{2^{13}\cdot3^8}{2^{15}\cdot3^6}\)
\(=\frac{1\cdot3^2}{2^2\cdot1}\)
\(=\frac{1\cdot9}{4\cdot1}\)
\(=\frac{9}{4}\)
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)
vậy...
2.
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
⇒ \(5x+1=\pm\frac{6}{7}\)
⇒ \(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)
Chúc bạn học tốt!
1.
\(x=\dfrac{3}{17}\Rightarrow\left|x\right|=\left|\dfrac{3}{17}\right|=\dfrac{3}{17}\)
\(x=-\dfrac{13}{161}\Rightarrow\left|x\right|=\left|-\dfrac{13}{161}\right|=\dfrac{13}{161}\)
\(x=-15,08\Rightarrow\left|x\right|=\left|-15,08\right|=15,08\)
2.(Bài này mình lấy máy tính bấm luôn á! Nếu GV yêu cầu bạn quy đồng thì bạn tự quy đồng nha!)
\(\dfrac{-6}{25}+\left|-\dfrac{4}{5}\right|-\dfrac{2}{25}\\ =\dfrac{-6}{25}+\dfrac{4}{5}-\dfrac{2}{25}\\ =\dfrac{12}{25}\)
\(\dfrac{5}{9}-\left|-\dfrac{3}{5}\right|+\dfrac{4}{9}+\dfrac{8}{5}\\ =\dfrac{5}{9}-\dfrac{3}{5}+\dfrac{4}{9}+\dfrac{8}{5}\\ =\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(-\dfrac{3}{5}+\dfrac{8}{5}\right)\\ =1+1\\ =2\)
Chúc bạn học giỏi!
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
c) Ta có(x-1)2 >= 0 với mọi x
(y+3)2>=0 với mọi c
=> (x-1)2+(y+3)2 >= 0 với mọi x,y
Dấu bằng xảy ra khi và chỉ khi
(x-1)2=0 và (y+3)2=0
=> x=1 và y=-3
\(3:\frac{9}{4}=\frac{3}{4}:6x\)
\(\Leftrightarrow\frac{3}{4}:6x=\frac{12}{9}\)
\(\Leftrightarrow\frac{3}{4}:6x=\frac{4}{3}\)
\(\Leftrightarrow6x=\frac{3}{4}:\frac{4}{3}\)
\(\Leftrightarrow6x=\frac{9}{16}\)
\(\Leftrightarrow x=\frac{3}{32}\)
a, 3 : (9/4) = 3/4 : (6*x)