Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
a) Ta có: \(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(=\frac{4^{10}\left(2^{10}+1\right)}{4^4\cdot2^4+4^4\cdot2^7}=\frac{4^{10}\left(2^{10}+1\right)}{4^4\left(2^4+2^7\right)}\)
\(=\frac{2^{10}+1}{2^4+2^7}=\frac{1025}{144}\)
b) Ta có: \(\left(3^2\right)^2-\left(-2^3\right)^2-\left(-5^2\right)^2\)
\(=3^4-\left(-8\right)^2-\left(-25\right)^2\)
\(=3^4-64-625=81-64-625=-608\)
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
Câu 1:
a) 2225 và 3150
Ta có:2225=(29)25=51225
3150=(36)25=72925
Vì 51225<72925
Suy ra: 2225<3150
Câu 2:
a)\(25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)
b)\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3+\frac{1}{4}:2=3+\frac{1}{8}=\frac{25}{8}\)
Câu 3:
a)\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^2.\left(\frac{1}{3^4}\right)=3^7:3^4=3^3\)
b)\(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c)\(3^2.2^5.\left(\frac{2}{3}\right)^2=288.\frac{4}{9}=2^7\)
d)\(\left(\frac{1}{3}\right)^3.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^4.\left(3^2\right)^2=3^4.\left(\frac{1}{3}\right)^4=3^4:3^4=1\)
a, 3 - (-6/7)\(^0\) + (1/2) \(^2\) :2
= 3 - 1 + 1/4 : 2
= 3 - 1 + 1/8
= 2 + 1/8 = 17/8
a
17/8
b
72