K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

a. \(2x\left(x-5\right)+21=x\left(2x+1\right)-12\)

\(2x^2-10x+21=2x^2+x-12\)

\(\left(2x^2-2x^2\right)-\left(10x+x\right)=-12-21\)

\(-11x=-33\Rightarrow x=3\)

b. \(\left(x^2-4\right)\left(x-2\right)\left(3-2x\right)=0\)

\(\left(x-2\right)^2\left(x+2\right)\left(3-2x\right)=0\)

\(\left[{}\begin{matrix}\left(x-2\right)^2=0\\x+2=0\\3-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

3 tháng 8 2018

b, x = -5/3 hoặc x = 4/3.

c, x = 0 hoặc x = 3, -3.

d, x = 0 hoặc x = 2, -2.

e, x = 1 hoặc x = \(\dfrac{-1}{2}\).

a: \(\Leftrightarrow x^2-40x+400-x^2-4x-3=-7\)

=>-44x+397=-7

=>-44x=-404

hay x=101

b: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\4-3x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};\dfrac{4}{3}\right\}\)

c: \(\Leftrightarrow x\left(x^2-9\right)=0\)

=>x(x-3)(x+3)=0

hay \(x\in\left\{0;3;-3\right\}\)

d: \(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{0;2;-2\right\}\)

e: =>(2x+1)(1-x)=0

=>x=-1/2 hoặc x=1

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

25 tháng 4 2020

1.(x -5)^2 - 25 =0

=> (x - 5)^2 = 25

=> x - 5 = 5 hoặc x - 5 = -5

=> x = 10 hoặc x = 0

vậy_

2. (x -2)^3 =27

=> x - 2 = 3

=> x = 5

vậy_

3. 3(x -7) + 2x(x+2) = 2x^2

=> 3x - 21 + 2x^2 + 4x = 2x^2

=> 7x - 21 = 0

=> 7x = 21

=> x = 3

vậy_

4. (x^2 - 4) (x +8) =0

=> x^2 - 4 = 0 hoặc x + 8 = 0

=> x^2 = 4 hoặc x = -8

=> x = 2 hoặc x = -2 hoặc x = -8

vậy_

5. x^ 2 + 3x = 0

=> x(x + 3) = 0 

=> x = 0 hoặc x + 3 = 0

=> x = 0 hoặc x = -3

vậy_

6. 3x^3 - 3x = 0

=> 3x(x^2 - 1) = 0

=> 3x(x - 1)(x + 1) = 0

=> x = 0 hoặc x = 1 hoặc x = -1

vậy_

7. (x +1)^2 = ( 2x +3)^2

=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0

=> (3x + 3)(-x - 2) = 0

=> x = -1 hoặc x = -2

vậy_

Bài làm

1) ( x - 5 )2 - 25 = 0

<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0

<=> x( x - 10 ) = 

<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy S = { 0; 10 }

2) \(\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=5\)

Vậy x = 5 là nghiệm phương trình.

3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)

\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)

\(\Leftrightarrow7x=21\)

\(\Leftrightarrow x=\frac{21}{7}=3\)

Vậy x = 3 là nghiệm phương trình

4) \(\left(x^2-4\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)

Vậy S = { 2; -2; -8 }

5) \(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)

Vậy S = { 0; -3 } 

6) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy S = { +1; 0 }

7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)

Vậy S = { -2; -4/3 }

# Học tốt #

a) Ta có: \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[5x-5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x-5x+10\right)=0\)

\(\Leftrightarrow10\left(x+1\right)=0\)

\(10\ne0\)

nên x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)=4\)

\(\Leftrightarrow4x^2-8x+x-2-2x+3-4=0\)

\(\Leftrightarrow4x^2-9x-3=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}-\frac{129}{16}=0\)

\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{129}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{9}{4}=\frac{\sqrt{129}}{4}\\2x-\frac{9}{4}=-\frac{\sqrt{129}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{9+\sqrt{129}}{4}\\2x=\frac{9-\sqrt{129}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{129}}{8}\\x=\frac{9-\sqrt{129}}{8}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{9+\sqrt{129}}{8};\frac{9-\sqrt{129}}{8}\right\}\)

c) Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x^2-9\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-3;3\right\}\)

d) Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x-2=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

Vậy: x=-1

e) Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+8\right)=3-3x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)

\(\Leftrightarrow3x-12=0\)

\(\Leftrightarrow3x=12\)

hay x=4

Vậy: x=4

f) Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-1\)

\(\Leftrightarrow6x^2-\left(6x^2-4x+15x-10\right)+1=0\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10+1=0\)

\(\Leftrightarrow-11x+11=0\)

\(\Leftrightarrow-11x=-11\)

hay x=1

Vậy: x=1

26 tháng 8 2020

câu b có cách giải khác không ạ?

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~

15 tháng 8 2021

bài làm sai hết rồi!

15 tháng 8 2021

toán cái gì mà toán 😡