K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

\(a,=\left(2x^3-x^2+x+4x^2-2x+2-x+1\right):\left(2x^2-x+1\right)\\ =\left[x\left(2x^2-x+1\right)+2\left(2x^2-x+1\right)-x+1\right]:\left(2x^2-x+1\right)\\ =x+2\left(\text{dư }-x+1\right)\\ b,=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =x^2+3\)

29 tháng 1 2020

a) \(6x^2-x-1\)

\(=6x^2-3x+2x-1\)

\(=3x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\)

29 tháng 1 2020

b) \(6x^2-6x-3\)

\(=3\left(2x^2-2x-1\right)\)

11 tháng 4 2020

b)

\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

c)

\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

d)

\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

e)

\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)

11 tháng 4 2020

a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)

\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)

\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Mk đang hok zoom sorry nha!!!

12 tháng 7 2019

\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)

\(=6x^2+12x+x+2-6x^2+10x\)

\(=23x+2\)

12 tháng 7 2019

a) (6x + 1)(x + 2) - 2x(3x - 5)

= 6x2 + 12x + x + 2 - 6x2 + 10x

= (6x2 - 6x2) + (12x + x + 10x) + 2

= 23x + 2

b) (2x - 1)2 - (2x - 3)(2x + 3)

= 4x2 - 4x + 1 - 4x2 + 9

= (4x2 - 4x2) - 4x + (1 + 9)

= -4x + 10

c) (2x - 3)3  - (3x  + 1)(5 - 4x) - 16x2

= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2

= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5

= 8x3 - 40x2 + 43x - 5

d) (3x + 2) - (x - 5) - x(3x - 13)

= 3x  + 2 - x + 5 - 3x2 + 13x

= (3x - x + 13x) + (2 + 5) - 3x2

= 15x + 7 - 3x2

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

a)

$6x^2-x-x=6x^2-3x+2x-1=3x(2x-1)+(2x-1)=(2x-1)(3x+1)$

b)

$6x^2-6x-3=3(2x^2-2x-1)$

c)

$15x^2-2x-1=15x^2-5x+3x-1=5x(3x-1)+(3x-1)=(3x-1)(5x+1)$

d)

$2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3$

$=x^2(2x+1)-x(2x+1)+3(2x+1)=(2x+1)(x^2-x+3)$

e)

$2x^3-5x^2+5x-3=2x^3-3x^2-2x^2+3x+2x-3$

$=x^2(2x-3)-x(2x-3)+(2x-3)=(2x-3)(x^2-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

a)

$6x^2-x-x=6x^2-3x+2x-1=3x(2x-1)+(2x-1)=(2x-1)(3x+1)$

b)

$6x^2-6x-3=3(2x^2-2x-1)$

c)

$15x^2-2x-1=15x^2-5x+3x-1=5x(3x-1)+(3x-1)=(3x-1)(5x+1)$

d)

$2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3$

$=x^2(2x+1)-x(2x+1)+3(2x+1)=(2x+1)(x^2-x+3)$

e)

$2x^3-5x^2+5x-3=2x^3-3x^2-2x^2+3x+2x-3$

$=x^2(2x-3)-x(2x-3)+(2x-3)=(2x-3)(x^2-x+1)$