K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,2x^2-18x+28=0\)

\(\Leftrightarrow2\left(x^2-9x+14\right)=0\)

\(\Leftrightarrow x^2-9x+14=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)

\(b,\dfrac{x-2}{x^2-9}+\dfrac{3x-1}{x+3}=\dfrac{2x+1}{x-3}+1\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(3x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-1=0\)

\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{3x^2-10x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{2x^2+7x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\)\(\Rightarrow x-2+3x^2-10x+3-2x^2-7x-3-x^2+9=0\)

\(\Leftrightarrow-16x+7=0\)

\(\Leftrightarrow-16x=-7\)

\(\Leftrightarrow x=\dfrac{7}{16}\left(tm\right)\)

\(VậyS=\left\{\dfrac{7}{16}\right\}\)

a: =>x^2-9x+14=0

=>(x-2)(x-7)=0

=>x=2 hoặc x=7

b: =>x-2+(3x-1)(x-3)=(2x+1)(x+3)+x^2-9

=>x-2+3x^2-9x-x+3=2x^2+7x+3+x^2-9

=>3x^2-9x+1=3x^2+7x-6

=>-16x=-7

=>x=7/16

8 tháng 3 2020

1)2x-3=11-5x

2x+5x=11+3

7x =14

x=2.

a) Ta có: \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[5x-5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x-5x+10\right)=0\)

\(\Leftrightarrow10\left(x+1\right)=0\)

\(10\ne0\)

nên x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)=4\)

\(\Leftrightarrow4x^2-8x+x-2-2x+3-4=0\)

\(\Leftrightarrow4x^2-9x-3=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}-\frac{129}{16}=0\)

\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{129}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{9}{4}=\frac{\sqrt{129}}{4}\\2x-\frac{9}{4}=-\frac{\sqrt{129}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{9+\sqrt{129}}{4}\\2x=\frac{9-\sqrt{129}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{129}}{8}\\x=\frac{9-\sqrt{129}}{8}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{9+\sqrt{129}}{8};\frac{9-\sqrt{129}}{8}\right\}\)

c) Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x^2-9\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-3;3\right\}\)

d) Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x-2=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

Vậy: x=-1

e) Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+8\right)=3-3x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)

\(\Leftrightarrow3x-12=0\)

\(\Leftrightarrow3x=12\)

hay x=4

Vậy: x=4

f) Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-1\)

\(\Leftrightarrow6x^2-\left(6x^2-4x+15x-10\right)+1=0\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10+1=0\)

\(\Leftrightarrow-11x+11=0\)

\(\Leftrightarrow-11x=-11\)

hay x=1

Vậy: x=1

26 tháng 8 2020

câu b có cách giải khác không ạ?

14 tháng 12 2021

\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)

29 tháng 10 2018

a) x(x+1)+3(x+1)=0

⇌ (x+1)(x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

b)3x(12x-4)-2x(18x+3)=0

⇒36x2-12x-36x2+6x=0

⇒ -6x = 0

⇒ x=0

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )