K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

(2x-1)^2014=(2x-1)^2016

(2x-1)^2016-(2x-1)^2014=0

(2x-1)^2014[(2x-1)^2-1)]=0

=> (2x-1)^2014=0, (2x-1)^2-1=0

2x-1=0, (2x-1)^2=1

2x=1, 2x-1=1, 2x-1=-1

x=1/2, 2x=2, 2x=0

x=1/2, x=1, x=0.

b/ 2^x+1.3^y=12^x

2^x+3^y=12^x

2^x=12^x-3^y. Vậy 2^0=12^0-3^y. (Vì nếu x,y>1 thì 12^x-3^y lẻ mà 2^x chẵn nên vô lí) => 1=1-3^y => 0=3^y (Vô lí vì 3^y>=1). Vậy ko có x,y thỏa mãn.

c/ 10^x:5^y=20^y

10^x=100^y

10^x=10^2y

=> x=2y. => xEN, y=2x

1 tháng 4 2016

fgdfgd

10 tháng 9 2016

\(a,2^{x+1}=3^y=12^x\Rightarrow2^{x+1}.3^y=2^{2x}.3y\)

\(\Rightarrow\frac{2^x}{2^{x+1}}=\frac{3^y}{3^x}\Rightarrow2^{2-x-x-1}=3^{y-x}\)

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

8 tháng 7 2017

Giúp mình nhé các bạn mình đang cần gấp lắm