Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{7^{10}}{1+7+7^2+...+7^9}\)
\(\Rightarrow\frac{1}{A}=\frac{1+7+7^2+...+7^9}{7^{10}}=\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}\)
Lại có: \(B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
\(\Rightarrow\frac{1}{B}=\frac{1+5+5^2+...+5^9}{5^{10}}=\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)
Ta có: \(7^{10}>5^{10}\Rightarrow\frac{1}{7^{10}}< \frac{1}{5^{10}}\)
\(7^9>5^9\Rightarrow\frac{1}{7^9}< \frac{1}{5^9}\)
\(7^8>5^8\Rightarrow\frac{1}{7^8}< \frac{1}{5^8}\)
\(...............................\)
\(7>5\Rightarrow\frac{1}{7}< \frac{1}{5}\)
\(\Rightarrow\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}< \frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)
\(\Rightarrow\frac{1}{A}< \frac{1}{B}\Rightarrow A>B\)
Chúc bạn học tốt !!!
a) S=1+52+54+.....+5200
=>52S=25S=52+54+56+.....+5202
=>25S-S=(52+54+56+....+5202)-(1+52+54+......+5200)
=>24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
\(a, 10^{n+1} -6.10 ^n\)
= \(10^n (10-6)=4.10^n\)
\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)
= \(2^n (2^3+2^2-2+1)\)
= \(2^n (8+4-2+1)\)
\(= 11.2^n\)
\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)
\(= 10^k(90-2+1)\)
= \(89.10^k\)
\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)
\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)
= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)
= \(5^{n-3+2}+5^n -6.5^{n-1}\)
\(= 5^{n-1}(1+5-6)\)
= \(5^{n-1}.0\)
= 0
a) Ta có: \(25\cdot\left(\frac{5}{2}\right)^{-2}\cdot\left(-2^{-3}\right)^{-1}\)
\(=25\cdot\frac{4}{25}\cdot\left(-8\right)\)
\(=4\cdot\left(-8\right)=-32\)
b) Ta có: \(\left(5^{-5}\right)^{-1}\cdot\left(\frac{1}{2}\right)^{-2}\cdot\left(\frac{1}{10}\right)^5\)
\(=3125\cdot4\cdot\frac{1}{100000}\)
\(=\frac{1}{8}\)
\(a,35:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(-\frac{5}{3}\right)=35.\left(-\frac{3}{5}\right)+\frac{5}{2}.\left(-\frac{3}{5}\right)\)
\(=-21+-\frac{3}{2}\)
\(=\frac{-42-3}{2}=-\frac{45}{2}\)
\(b,\frac{10^3+2.5^3+5^3}{55}=\frac{\left(2.5\right)^3+2.5^3+5^3}{5.11}\)
\(=\frac{5^3\left(2^3+2+1\right)}{5.11}\)
\(=\frac{5^2\left(8+2+1\right)}{11}\)
\(=\frac{5^2.11}{11}=5^2=25\)
\(C,\frac{27^2.2^5}{6^6.32^3}=\frac{\left(3^3\right)^2.2^5}{\left(2.3\right)^6.2^5}\)
\(=\frac{3^6}{2^6.3^6}=\frac{1}{2^6}=\frac{1}{64}\)
a) (2*5)^2=2^2/5^2
b) 10^5/2^5=(10/2)^5