K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Đặt  \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)

  •   \(n=2k\)thì:  \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
  •  \(n=2k+1\)

Ta có:    \(n=2k+1\equiv1\left(mod2\right)\)

             \(2015^{2014}\equiv1\left(mod2\right)\)

\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)

Vậy  

14 tháng 12 2015

5

tích với nha

 

14 tháng 12 2015

ta có 12015+22015+....+20142014+20152015

=>12015+22015+.....+20142015+20152015-2014

(1+2+3+4+....+2014+2015)2015-2014

=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà

20311202015-2014=......6

suy ra tổng đó có tận cùng là 6

 

 

4 tháng 10 2016

Bài 1:

a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016

7A = 7 + 72 + 73 + 74 + ... + 72017

7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)

6A = 72017 - 1

\(A=\frac{7^{2017}-1}{6}\)

b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017

4B = 4 + 42 + 43 + 44 + ... + 42018

4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)

3B = 42018 - 1

\(B=\frac{4^{2018}-1}{3}\)

Bài 2:

a) Ta có: \(14\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)

b) Ta có: \(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)

4 tháng 10 2016

Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha

 

6 tháng 1 2016

A= 2015+20152+20153+....+20152013+20152014+20152015 

A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)

A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)

A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016

A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)

=> A chia hết cho 2016

=> đpcm : điều phải chứng minh


 

7 tháng 1 2016

BẠN ƠI SAI RÙI! CÓ 2015 SỐ HẠNG THÌ PHẢI LẺ 1 SỐ CHỨ