Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BT1: a) Ta có: /3,4 - x/\(\ge\) 0 =>1,7 + /3,4 - x/\(\ge\)1,7
Đẳng thức xảy ra khi : 3,4 - x = 0 => x = 3,4
Vậy giá trị nhỏ nhất của 1,7 + /3,4 - x/ là 1,7 khi x = 3,4.
b) Ta có: /x + 2,8/\(\ge\) 0 => /x + 2,8/ - 3,5\(\ge\)-3,5
Đẳng thức xảy ra khi : x + 2,8 = 0 => x = -2,8
Vậy giá trị nhỏ nhất của /x + 2,8/ - 3,5 là -3,5 khi x = -2,8.
c)Ta có: /x - 300/ = /300 - x/ => /x - 500/ + /x - 300/ = /x - 500/ + /300 - x/\(\ge\)/x - 500 + 300 - x/ = 200
Đẳng thức xảy ra khi: (x - 500) x (300 -x ) = 0 => x = 500 hoặc x = 300
Vậy giá trị nhỏ nhất của /x - 500/ + /x - 300/ là 200 khi x = 500 hoặc x = 300.
BT2: a) Ta có: /x - 3,5/\(\ge\)0 => -/x - 3,5/\(\le\)0 => 0,5 + ( -/x - 3,5/ ) = 0,5 - /x - 3,5/ \(\le\)0,5
Đẳng thức xảy ra khi: x - 3,5 = 0 => x = 3,5
Vậy giá trị lớn nhất của 0,5 - /x - 3,5/ là 0,5 khi x = 3,5.
b) Ta có: /1,4 - x/\(\ge\)0 => -/1,4 - x/\(\le\)0 => -/1,4 - x/ + (-2) = -/1,4 - x/ -2 \(\le\)-2
Đẳng thức xảy ra khi: 1,4 - x = 0 => x = 1,4
Vậy giá trị lớn nhất của -/1,4 - x/ -2 là -2 khi x = 1,4.
(Dấu // là giá trị tuyệt đối )
a) \(A=0,5-\left|x-3,5\right|\le0,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3,5\right|=0\Rightarrow x=3,5\)
Vậy Max(A) = 0,5 khi x = 3,5
b) \(C=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(C) = 1,7 khi x = 3,4
a/ Ta có: -|x - 3,5|\(\le\)0
=> A = 0,5 - |x - 3,5|\(\le\)0,5
Đẳng thức xảy ra khi: |x - 3,5| = 0 => x = 3,5
Vậy giá trị lớn nhất của A là 0,5 khi x = 3,5
b/ Ta có: -|1,4 - x|\(\le\)0
=> B = - |1,4 - x| - 2\(\le\)-2
Đẳng thức xảy ra khi: -|1,4 - x| = 0 => x = 1,4
Vậy giá trị lớn nhất của B là -2 khi x = 1,4
c/ Ta có: |3,4 - x|\(\ge\)0
=> C = 1,7 + |3,4 - x| \(\ge\)1,7
Đẳng thức xảy ra khi: |3,4 - x| = 0 => x = 3,4
Vậy giá trị nhỏ nhất của C là 1,7 khi x = 3,4
d/ Ta có: |x + 2,8|\(\ge\)0
=> D = |x + 2,8| - 3,5 \(\ge\)-3,5
Đẳng thức xảy ra khi: |x + 2,8| = 0 => x = -2,8
Vậy giá trị nhỏ nhất của D là -3,5 khi x = -2,8
Bài 10:
a) Tìm Max
\(A=0,5-\left|x-3,5\right|\)
Có: \(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Dấu = xảy ra khi: \(\left|x-3,5\right|=0\)
\(\Rightarrow x-3,5=0\Rightarrow x=3,5\)
Vậy: \(Max_A=0,5\) tại \(x=3,5\)
\(B=-\left|1,4-x\right|-2\)
Có: \(-\left|1,4-x\right|\le0\)
\(\Rightarrow-\left|1,4-x\right|-2\le-2\)
Dấu = xảy ra khi: \(-\left|1,4-x\right|=0\)
\(\Rightarrow1,4-x=0\Rightarrow x=1,4\)
Vậy: \(Max_B=-2\) tại \(x=1,4\)
b. Tìm Min
\(C=1,7+\left|3,4-x\right|\)
Có: \(\left|3,4-x\right|\ge0\)
\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Dấu = xảy ra khi: \(\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\Rightarrow x=3,4\)
Vậy: \(Min_C=1,7\) tại \(x=3,4\)
\(D=\left|x+2,8\right|-3,5\)
Có: \(\left|x+2,8\right|\ge0\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)
Dấu = xảy ra khi: \(\left|x+2,8\right|=0\)
\(\Rightarrow x+2,8=0\Rightarrow x=-2,8\)
Vậy: \(Min_D=-3,5\) tại \(x=-2,8\)
1) \(A=1,7+\left|3,4-x\right|\ge1,7\)
\(minA=1,7\Leftrightarrow x=3,4\)
2) \(B=\left|x-2,8\right|-3,5\ge-3,5\)
\(minB=-3,5\Leftrightarrow x=2,8\)
3) \(C=0,5-\left|x-3,5\right|\le0,5\)
\(maxC=0,5\Leftrightarrow x=3,5\)