Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x-1\right)^2-4y^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
b: \(=3\left(x^2-4x+4\right)=3\left(x-2\right)^2\)
c: \(=4x^2y^3\left(3y^2-8xyz+7x^2\right)\)
d: \(=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
c: \(=\left(x-y\right)\left(x+y\right)-2z\left(x-y\right)=\left(x-y\right)\left(x+y-2z\right)\)
a, 25^2 - 15^2 = ( 25 - 15 )( 25 + 15) = 10 . 40 = 400
b, 87^2 + 73^2 - 27^2 - 13^2
= 87^2 - 27^2 + 73^2 - 13^2
= ( 87 - 27)( 87 + 27) + (73 - 13 )(73+ 13)
= 60 . 114 + 60 . 86
= 60( 114 + 86)
= 60 .200
= 12000
c, x^3 + 27 + 9 x^2 + 27x
= x^3 + 27x + 9x^2 + 27
=(x + 3)^3
thay x =97 ta có
= (97 + 3)^3
= 100^3
=1000000
d, 1,6^2 + 4.0,8.3,4 + 3,4^2 ( nè 3,4^2 chứ không phải 3,42)
= 1,6^2 + 2.2.0,8.3,4 + 3,4^2
=1,6^2 + 2.1,6.3,4 + 3,4^2
= (1,6 + 3,4)^2
= 5^2
= 25
e, x = 11 => 12 =x + 1 thay vào ta có
x^4 - ( x+ 1)x^3 + (x+1)x^2 -(x+1)x + 11
= x^4 - x^4 - x^13 + x^3 + x^2 - x^2 - x + 11
= -x + 11
= -11 + 11
= 0
ĐÚng ch o tui nha
Do x = 11 => x - 11 = 0. Vậy ta tìm cách tách biểu thức đã cho sao cho xuất hiện các số x - 11, cách tách như sau:
\(x^4-12x^3+12x^2-12x+111\)
\(=x^4-11x^3-x^3+11x^2+x^2-11x-x+11+100\)
\(=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)+100\)
Thay x = 11 vào thì vì x - 11 = 0 nên biểu thức trên có gá trị bằng 100.
a) \(x^3-x^2-4=x^3-2x^2+x^2-4=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
c) \(2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right).\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
d) \(2x^4+x^3-22x^2+15x+36=2x^4+2x^3-x^3-x^2-21x^2-21x+36x+36.\)
\(=2x^3\left(x+1\right)-x^2\left(x+1\right)-21x\left(x+1\right)+36\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-x^2-21x+36\right)\)
a: \(A=15^4-15^4+1=1\)
b: x=11 nên x+1=12
\(A=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+111\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)
=111-11=100
\(x^2-2x=24\)
<=> \(x^2-2x-24=0\)
<=> \( \left(x+4\right)\left(x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy....
\(a,\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)
\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)
\(\Leftrightarrow4\left(2+x\right)=0\)
\(\Leftrightarrow2+x=0\)
\(\Leftrightarrow x=-2\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow x=-127,5\)
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
\(a,=1,6^2+2\cdot1,6\cdot3,4+3,4^2=\left(1,6+3,4\right)^2=5^2=25\\ b,Sửa:x^4-12x^3+12x^2-12x+11\\ =x^4-11x^3-x^3+11x^2+x^2-11x-x+11=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)\\ =\left(x-11\right)\left(x^3-x^2+x-1\right)=\left(x-11\right)\left(x-1\right)\left(x^2+1\right)\\ c,=\left(x^2+3\right)^2-\left(x^2-4\right)\left(x^2+12\right)\\ =x^4+6x^2+9-x^4-8x^2+48=-2x^2+57\)
ng cham chi :)