Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P/s trên là S, ta có :
\(S=\frac{3.5+3.9.27+9.27.81+27.81.243}{4.5+3.12.27+9.36.81+27.108.243}\)
\(S.\frac{1}{3}=\frac{\left(1\right).5+3.\left(3\right).27+9.\left(9\right).81+27.\left(27\right).243}{4.5+3.12.27+9.36.81+27.108.243}\)
\(S.\frac{1}{3}=\frac{1}{4}\)
\(\Rightarrow\)\(S=\frac{1}{4}:\frac{1}{3}=\frac{3}{4}\)
a. \(-a-\left(b-a-c\right)=-a-b+a+c=c-b\)
b. \(-\left(a-c\right)-\left(a-b+c\right)=-a-c-a+b-c=b-2a-2c\)
c. \(b-\left(b+a-c\right)=b-b-a+c=c-a\)
d.\(-\left(a-b+c\right)-\left(a+b+c\right)=-a+b-c-a-b-c=-2a-2c=-2\left(a+c\right)\)e. \(\left(a+b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)=a+b-a+b+a-c-a-c=2b-2c=2\left(b-c\right)\)
f. \(\left(a+b-c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)=a+b-c+a-b+c-b-c+a-a+b+c=2a\)
a) -a - (b - a - c)
= -a - b + a + c
=[ -a + a] - (b + c)
= 0 - (b + c)
= -(b + c)
d) -(a - b + c) - (a + b + c)
= -a + b - c - a - b - c
= (-a - a) + (b - b) + (c - c)
= (-a - a) + 0 + 0
= -a - a
e) (a + b) - (a - b) + (a - c) - (a + c)
= a + b - a + b + a - c - a - c
= (a - a) - (a + a) + (b + b) - (c - c)
= 0 + 2a + 2b - 0
= 2a + 2b
b) -(a - c) - (a - b + c)
= -a + c - a + b - c
= (-a - a) + (c - c) + b
= [(-a) + (-a)] + 0 + b
= 2(-a) + b
c) b - (b + a - c)
= b - b - a + c
= 0 - a - c
= -a - c
f) (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
= 0 - (b + c - a) - (a - b - c)
= 0 - b - c + a - a + b - c
= -b - c + a - a + b - c
= (-b + b) - (c - c) + (a - a)
= 0 - 0 + 0
= 0
a, a\(\ge\)0
b, a< 0
c , a \(^{ }\notinℝ\)
d a \(\le\)0
e a \(\le\)
1, Chứng minh đẳng thức :
a) (a - b + c) - (a + c) = -b
(a - b + c) - (a + c)
=a-b+c-a-c
=(a-a)+(c-c)-b
=0+0-b
=-b
b) (a + b) - (b - a) + c = 2a + c
(a + b) - (b - a) + c
=a+b-b+a+c
=(a+a)+(b-b)+c
=2a+0+c
=2a+c
c) -( a + b - c) + (a- b- c) = -2b
-( a + b - c) + (a- b- c)
=-a-b+c+a-b-c
=[a+(-a)]+[c+(-c)]-b-b
=0+0-(b+b)
=-2b
d) a( b+c) - a (b +d) =a( c-d )
a( b+c) - a (b +d)
=ab+ac-(ab+ad)
=(ab-ab)+ac-ad
=0+ac-ad
=a(c-d)
e) a (b - c) + a( d+ c) = a( b+d)
a (b - c) + a( d+ c)
=ab-ac+ad+ac
=(ac+(-ac))+ad+ab
=0+ad+ab
=a(d+b)
1
a) \( (a - b + c) - (a + c) \)
\(=\left(a+c-b\right)-\left(a+c\right)\)
\(=\left[\left(a-c\right)-\left(a-c\right)\right]-b\)
\(=0-b\)
\(=-b\)
b) \( (a + b) - (b - a) + c \)
\(=a+b-b+a+c\)
\(=\left(a+a\right)+\left(b-b\right)+c\)
\(=\left(a+a\right)-0+c\)
\(=a+a+c\)
\(=2a+c\)
2
\(P=a+ [( a - 3 ) - (-a - 2)]\)
\(P=a+a-3+a+2\)
\(P=a+a+a-3+2\)
\(P=3a-3+2\)
\(P=0+2\)
\(P=2\)
\(Q=[a + (a +3)] - [( a + 2) - ( a - 2)]\)
\(Q=a+a+3-a-2-a+2\)
\(Q=a+a+3-a+\left(-2-a+2\right)\)
\(Q=2a+3-a+a\)
\(Q=2a+3-2a\)
\(Q=3\)
Vì \(P=2;Q=3\Rightarrow P< Q\)
-a-b+a+c=-b+c
-a+b-c-a-b-c=-2a-2c
a+b-a-b+a-c-a-c=-2c
-a-c+a-b-c=-2c+b
b-b-a+c=-a+c
a+b-c+a-b+c-b+c-a-a+b+c=2c
du sao cau tra loi cua ban dung
(1.5.18+2.10.36+3.15.54) / (1.3.9+2.6.18+3.9.27) =
(5.6+10.2+15.2) / (9+6+9) =
(30+20+30) / 24 =
80/24 =
10/3
theo kết quả của mk là như thế