K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ND
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TM
21 tháng 10 2016
\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)
=>\(5A=1+\frac{1}{5}+...+\frac{1}{5^{2014}}\)
=>\(5A-A=\left(1+\frac{1}{5}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
=>\(4A=1-\frac{1}{5^{2015}}\)
=>\(A=\frac{1-\frac{1}{5^{2015}}}{4}\)
Dễ thấy \(1-\frac{1}{5^{2015}}< 1\Rightarrow\frac{1-\frac{1}{5^{2015}}}{4}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)
K
1
T
0
NM
0
VT
0
VT
0
\(A=\left(\frac{1}{5}\right)^1+\left(\frac{1}{5}\right)^{^2}+...+\left(\frac{1}{5}\right)^{2015}\)
\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)
\(5A=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{2015}}\)
\(\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}\)
Vì \(1-\frac{1}{5^{2015}}<1\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}<\frac{1}{4}\)