Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{14^{16}.21^{32}.35^{48}}{10^{16}.15^{32}.7^{96}}\)= \(\frac{\left(2.7\right)^{16}.\left(3.7\right)^{32}.\left(5.7\right)^{48}}{\left(2.5\right)^{16}.\left(3.5\right)^{32}.7^{96}}\)= \(\frac{2^{16}.7^{16}.3^{32}.7^{32}.5^{48}.7^{48}}{2^{16}.5^{16}.3^{32}.5^{32}.7^{96}}\)= \(\frac{2^{16}.7^{96}.3^{32}.5^{48}}{2^{16}.5^{48}.3^{32}.7^{96}}\)=1
\(\frac{14^{16}.21^{32}.35^{48}}{10^{16}.15^{32}.7^{96}}=\frac{2^{16}.7^{16}.3^{32}.7^{32}.5^{48}.7^{48}}{2^{16}.5^{16}.3^{32}.5^{32}.7^{96}}\)
\(=\frac{2^{16}.\left(7^{16}.7^{32}.7^{48}\right).5^{48}.3^{32}}{2^{16}\left(5^{16}.5^{32}\right).3^{32}.7^{96}}=\frac{2^{16}.7^{96}.5^{48}.3^{32}}{2^{16}.5^{48}.3^{32}.7^{96}}\)=1
a) \(\dfrac{15^{30}}{45^{15}}=\dfrac{15^{30}}{3^{15}.15^{15}}=\dfrac{15^{15}}{3^{15}}=5^{15}\)
b) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{8^5.3^8}{2^6.3^6.8^3}=\dfrac{8^2.3^2}{2^6}=\dfrac{2^6.3^2}{2^6}=3^2=9\)
c) \(\dfrac{14^{10}.21^{32}.35^{48}}{10^{10}.15^{32}.7^{96}}=\dfrac{2^{10}.7^{10}.3^{32}.7^{32}.5^{48}.7^{48}}{2^{10}.5^{10}.3^{32}.5^{32}.7^{96}}\)
= \(\dfrac{2^{10}.7^{58}.3^{32}.5^{48}}{2^{10}.5^{42}.3^{32}.7^{96}}=\dfrac{5^6}{7^{38}}\) ( Câu này làm bừa, có lẽ sai đấy :)) )
2. So sánh
a) 3200 = 9100
2300 = 8100
Vì 9100 > 8100 nên 3200 < 2300
b) 912 = 7294
268 = 6764
Vì 7294 > 6764 nên 912 > 268
c) 224 = 88
316 = 98
Vì 88 < 98 nên 224 < 316
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
1. a) (x-2)2 =1
=> x - 2 = \(\pm\sqrt{1}\)
=> x - 2 = 1 hoặc -1
=> x = 3 hoặc 1
b) 2x - 1= -8
=> 2x = -7
=>x = \(\dfrac{-7}{2}\)
c)thiếu đề
d) (x-1)x+2 = (x-1)x+4
(x-1)x+2 = (x-1)x+2+2
(x-1)x+2 = (x-1)x+2. (x-1)2
(x-1)x+2 - (x-1)x+2. (x-1)2 = 0
=> (x-1)x+2. [1 - (x-1)2] = 0
\(\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2a) \(\dfrac{45^{10}.5^{10}}{75^{10}}\) = \(\dfrac{\left(3.3.5\right)^{10}.5^{10}}{\left(5.5.3\right)^{10}}\) = \(\dfrac{3^{10}.3^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}\) = \(3^{10}\)
b) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)=\(\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)=\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)=\(3^2\)